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Abstract

Motivation: Transcriptomes are routinely used to prioritize genes underlying specific phenotypes. Current
approaches largely focus on differentially expressed genes (DEGs), despite the recognition that phenotypes emerge
via a network of interactions between genes and proteins, many of which may not be differentially expressed.
Furthermore, many practical applications lack sufficient samples or an appropriate control to robustly identify statis-
tically significant DEGs.

Results: We provide a computational tool—PathExt, which, in contrast to differential genes, identifies differentially
active paths when a control is available, and most active paths otherwise, in an omics-integrated biological network.
The sub-network comprising such paths, referred to as the TopNet, captures the most relevant genes and processes
underlying the specific biological context. The TopNet forms a well-connected graph, reflecting the tight orchestra-
tion in biological systems. Two key advantages of PathExt are (i) it can extract characteristic genes and pathways
even when only a single sample is available, and (ii) it can be used to study a system even in the absence of an ap-
propriate control. We demonstrate the utility of PathExt via two diverse sets of case studies, to characterize (i)
Mycobacterium tuberculosis response upon exposure to 18 antibacterial drugs where only one transcriptomic sam-
ple is available for each exposure; and (ii) tissue-relevant genes and processes using transcriptomic data for 39
human tissues. Overall, PathExt is a general tool for prioritizing context-relevant genes in any omics-integrated bio-
logical network for any condition(s) of interest, even with a single sample or in the absence of appropriate controls.

Availabilityand implementation: The source code for PathExt is available at https://github.com/NarmadaSambaturu/
PathExt.

Contact: nchandra@iisc.ac.in or sridhar.hannenhalli@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole-genome transcriptomic data are routinely harnessed to probe
genes and processes underlying specific biological contexts, includ-
ing diseases (Jiang et al., 2015). Extracting biological insights from
such high-dimensional data remains an important challenge (Esteve-
Codina, 2018). A standard approach to interpreting such data is to
first identify differentially expressed genes (DEGs) and then to iden-
tify enriched functions among such genes (Esteve-Codina, 2018).
However, biological phenotypes emerge from complex interactions
among numerous biomolecules, resulting in a highly heterogeneous
transcriptional landscape, thus adversely affecting the power to de-
tect critical genes and pathways based on DEGs alone. Moreover,
such high-coverage data encodes a vast amount of information

beyond DEGs, warranting exploration using multiple complemen-
tary approaches. Genome-wide molecular interaction networks con-
structed from experimentally identified physical, regulatory,
signaling and metabolic interactions have shown great promise as a
framework for integrating and interpreting such data (Sambarey
et al., 2017a,b). The identification of sub-networks in such biologic-
al networks, which encode the processes perturbed by a stimulus, or
active processes in general, can lead to mechanistic insights, as well
as help prioritize genes for intervention (Mitra et al., 2013).

Several methods have been proposed to integrate transcriptomic
data with biological networks, that identify ‘active modules’ or con-
nected sub-networks which show changes across conditions (Mitra
et al., 2013). Current approaches are largely built on the work by
Ideker et al. (2002), called jActiveModules, which formulates a sub-
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network scoring scheme based on the statistical significance of dif-
ferential gene expression, and then identifies high-scoring sub-net-
works using a simulated annealing approach. Other methods along
similar ideas have been proposed, that filter sub-networks based, for
example, on network motifs (Milo et al., 2002), or on k-shortest
paths between a set of ‘seed’ nodes sampled based on their differen-
tial expression (Cabusora et al., 2005). He et al. (2011) study the dy-
namics in hepatocellular carcinoma by identifying an active sub-
network for each stage of the disease by only retaining edges linking
statistically significant DEGs, and then comparing the different sub-
networks. Despite the availability of interaction data, these methods
largely rely on network scoring schemes which prioritize DEGs
(Mitra et al., 2013). However, in many practical scenarios including
clinical settings, lack of appropriate controls or sufficiently large
number of samples preclude robust identification of statistically sig-
nificant DEGs (Stretch et al., 2013).

In this work, to complement the conventional differential
expression-based analyses, we provide PathExt, a path-based ap-
proach to mining omics-integrated biological networks. PathExt
uses a network weighting scheme that prioritizes edges/interactions
rather than nodes/genes, and identifies differentially active paths
when comparing conditions, or highly active paths when studying a
single condition. The sub-network comprised of these differential
paths, referred to as the TopNet, captures the genes and pathways
characterizing the biological condition under study. Deviating from
traditional approaches to active sub-network identification, PathExt
does not use the selection of a connected module as a constraint.
Rather, the method results in a well-connected sub-network, reflect-
ive of the interconnectedness of biological processes responding to
any stimulus.

PathExt can be used to address the following biologically im-
portant questions: (i) What are the most significantly differential
paths between conditions, and what are the most critical genes
underlying the differentially active paths (note that the critical genes
themselves may not be differentially active)?; (ii) What is the re-
sponse to a given perturbation?; and (iii) What are the most active
paths and processes in a condition for which there is no appropriate
control?

We demonstrate the wide applicability of PathExt by applying it
to two diverse sets of case studies. (i) Exposure of the pathogen
Mycobacterium tuberculosis to 18 antibacterial drugs, where only
one sample is collected for each such exposure. We find that the
TopNet for each sample reveals the pathways known to be affected
by the corresponding drug. (ii) Transcriptomic data for 39 human
tissues. Application of PathExt reveals tissue-relevant genes and
processes despite the absence of a clear control. In all applications,
we find that the TopNet forms a well-connected graph (not expected
by chance). Overall, PathExt is a general framework for the integra-
tion and analysis of knowledge-based biological networks and omics
data, to reveal context-relevant genes and processes. This can be
done even with a single sample, or in the absence of appropriate
controls. We provide the open source PathExt tool at https://github.
com/NarmadaSambaturu/PathExt.

2 Materials and methods

2.1 PathExt
We provide an overview of PathExt in Figure 1. The inputs to
PathExt are (i) a directed gene network and (ii) gene-centric omics
data for the conditions of interest. The omics data can represent a
variety of quantities pertaining to the node, such as gene expression
level, differential expression, protein, metabolite level, etc., in one
or more conditions. The output of PathExt is a sub-network, that
we refer to as the TopNet, consisting of the most significant differ-
ential or active paths, and is interpreted based on the application
context.

PathExt can be used to interrogate any combination of
knowledge-based networks and omics data. For clarity, we describe
the steps for a protein-protein interaction network (PPIN) and gene
expression data. The pipeline consists of the following steps (Fig. 1):

(1) integrate inputs, (2) compute top k shortest paths, (3) permuta-
tion based significance estimation and (4) construct TopNet by
retaining the edges in the significant shortest paths.

1. Integrate inputs: We integrate the inputs by computing (sam-
ple-specific or condition-specific) node and edge weights in the
knowledge-based network using the omics data. In the specific scen-
ario when comparing conditions (e.g. pre- and post-treatment), we
encode the ‘response’ of the system to the change in conditions by
assigning the node weight as either the fold change in gene expres-
sion (Ni ¼ FC), or fold change in combination with gene expression
(Ni ¼ SI� FC). Here, Ni is the weight of node i, and SI is the nor-
malized signal intensity, or expression level, of a particular gene.
Assigning Ni ¼ SI� FC prioritizes abundant genes which may not
be highly differentially expressed, and also distinguishes between
two genes with the same fold change, but different abundance. For
instance, given FCðgene AÞ ¼ 400=200, and FCðgene BÞ ¼ 4=2,
genes A and B will be treated equally if Ni ¼ FC, but gene A will be
prioritized if Ni ¼ SI� FC. Thus, using Ni ¼ FC can be expected to
highlight alterations between conditions, while Ni ¼ SI� FC can
help study highly active as well as altered processes. We have pro-
vided both options in our tool for the user to choose from depending
on the application. The response to a perturbation can be studied in
terms of up-regulated/activated pathways (Activated Response
TopNet), obtained by computing FC ¼ SIperturbed=SIcontrol, or down-
regulated/repressed pathways (Repressed Response TopNet),
obtained using FC ¼ SIcontrol=SIperturbed. The Response TopNet is a
union of these two TopNets, and provides a holistic view of the ac-
tive, altered genes and processes. Exclusively applying the expres-
sion value as the node weight ðNi ¼ SIÞ is useful either when no
control is available, or when the emphasis is on identifying highly
active processes in each state. This TopNet is referred to as the
Highest Activity TopNet (HA TopNet). Even in this case, compari-
sons between states can be carried out after the TopNet is generated
for each state.

We interpret an edge to represent a ‘reaction’ between the two
nodes, and following the principles of mass action kinetics, an edge

between highly abundant nodes is given Edge weightði;jÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
Ni�Nj

p ,

where Ni and Nj are the weights of the incident nodes i, j. This
choice gives highly active interactions a low edge weight.

2. Compute top k shortest paths: To achieve a biological outcome,
typically a sequence of active reactions is involved, represented by a ser-
ies of low weight edges in our network. In order to enumerate such low

Fig. 1. PathExt overview. PathExt uses a knowledge-based directed network and

omics data as inputs, and outputs a sub-network consisting of context-relevant

genes and processes, referred to as the TopNet. 1. Integrate inputs: PathExt integra-

tes the inputs by weighting the nodes and edges of the knowledge-based network as

a function of the abundance of the biomolecules. Node weight is one of SI � FC, FC

or SI, where SI is signal intensity (e.g. gene expression) and FC is the fold change in

abundance. Edge weightði;jÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
Ni�Nj

p , giving an edge between highly abundant or

altered molecules a low weight. Thus, a low-weight path will traverse highly active

or altered reactions. 2. Compute top k shortest paths: Shortest paths are computed

between all pairs of nodes in the weighted network, of which the top k paths with

least weight, corresponding to highly active and altered paths, are used for further

analyses. 3. Permutation based significance estimation: The rows of the input omics

matrix are shuffled independently to create r random weighted networks, and esti-

mate statistical significance of the top k shortest paths. 4. Construct TopNet:

Among the top k paths, the multiple testing corrected significant paths constitute a

sub-network, called the TopNet
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weight paths, we use Dijkstra’s algorithm (Dijkstra, 1959) to identify
all-pair-shortest-paths. We then normalize the path weight for each
node pair by the number of edges along the shortest path to get

Normalized path weight ¼
P

edges in path
Edge weight

Number of edges in path , and retain the top k

shortest paths with least weight. Here k is a user-defined, application-
specific threshold.

3. Permutation based significance estimation: We assess the stat-
istical significance of the normalized weight of each selected path

empirically as follows. Given an m�n matrix of gene expression
data for m genes in n samples/conditions, we randomly shuffle data

in each row (gene) independently. The edges are re-weighted with
the randomized gene expression data, and the weight of each path
from step 2 is computed. After r such randomizations, for each path

selected in step 2, r randomization-based weights are computed,
based on which a z-score and p-value is estimated for each path. The

p-value is finally transformed into a q-value (Benjamini and
Hochberg, 1995) to account for multiple hypotheses testing. All
paths with significant q-value are retained.

4. Construct TopNet: The edges in the significant paths from
step 3 form a sub-network, which we refer to as the TopNet. The

TopNet provides a snapshot of the active and/or significantly altered
processes in the system, and can be studied to gain mechanistic
insights. To further prioritize critical genes and paths in the TopNet,

we apply network centrality measure—Ripple Centrality
(Sambaturu et al., 2016).

In cases where a single condition is being examined, or the num-
ber of conditions is too small to generate a sufficiently large number

of randomized gene expression matrices, step 3 can be skipped, and
top k shortest paths can be taken to represent highly active, altered
paths, albeit without the statistical filter. In such cases, Step 4 can be

directly applied to these paths to generate a TopNet.

2.2 Ripple centrality
Ripple centrality (Sambaturu et al., 2016) prioritizes nodes which

can reach a large fraction of the network along highly active and

perturbed paths. It is measured as Ripple centralityðuÞ ¼ CðuÞ
�RoutðuÞ, where RoutðuÞ ¼ jnodes reachable from uj denotes the

outward reachability of node u, and CðuÞ ¼ ðn� 1Þ=
Pn�1

v¼1

rðu; vÞ gives

the closeness centrality of node u. Here rðu; vÞ denotes the weight of
the shortest path from node u to all n – 1 other nodes in the graph.

2.3 Mycobacterium tuberculosis (M.tb) drug exposure
2.3.1 Data

Transcriptomic data for M.tb H37Rv exposed for 16 h to 2xMIC of
18 drugs was obtained from GSE71200 (Ma et al., 2015). The list of

18 drugs along with their mechanism of action and TopNet details
can be found in Supplementary Table S1. A knowledge-based net-
work composed of experimentally validated protein-protein interac-

tions as well as regulatory interactions in M.tb was obtained from
Mishra et al. (2017), consisting of 3686 genes and 34 223 edges.

2.3.2 Gold standards

INH is known to affect the mycolic acid synthesis and processing
pathways in M.tb (Wishart et al., 2018). To create a gold standard

for INH treatment, we searched for the term ‘mycolic acid’ in
Mycobrowser (Kapopoulou, 2011), a database of manually curated
annotations for pathogenic mycobacteria, including M.tb. This

resulted in a list of 17 M.tb genes, to which we added katG and fas,
the known targets of INH (Wishart et al., 2018). Similarly, gold

standards were created for 5 other drugs by searching for terms
related to their known mechanisms of action—‘RNA polymerase’
for Rif, ‘mycolic acid’ for ethionamide, ‘protein synthesis’ for cap-

reomycin and ‘30s ribosomal protein’ as well as ‘16s rrna’ for kana-
mycin and streptomycin (Wishart et al., 2018) (Supplementary
Table S3).

2.3.3 TopNet creation

For all 18 drugs in GSE71200 (Ma et al., 2015), Activated Response
TopNets were constructed using Ni ¼ SIdrug � ðSIdrug=SIcontrolÞ,
while Ni ¼ SIcontrol � ðSIcontrol=SIdrugÞ was used to construct the
Repressed Response TopNets. Only shortest paths with 2 or more
edges were considered, and 1000 randomizations of the gene expres-
sion matrix were carried out for computing statistical significance of
shortest paths. The percentile and q-value thresholds were chosen
such that the resulting TopNets were of similar size for all cases
(Supplementary Table S1). Activated and Repressed TopNets are
provided in Supplementary Files S1 and S2, respectively.

2.3.4 Functional enrichment

Functional enrichment was carried out using ClueGO v2.3.4
(Bindea et al., 2009), a plugin in the network visualization tool
Cytoscape 3.2 (Shannon et al., 2003). Enrichment was against GO
Biological Processes, GO Cellular Components and GO Molecular
Functions, with a q-value cutoff of 0.01. Enriched pathways for all
18 drug exposure cases are provided in Supplementary File S3.

2.3.5 Significance of TopNet connectedness

Significance of TopNet connectedness was tested by comparing
against comparable sub-networks induced by (i) the top DEGs, (ii)
1000 sets of randomly sampled genes and (iii) 1000 sets of randomly
sampled edges. Here the number of DEGs and sampled genes (or
edges) corresponds to the number of nodes (or edges) in the TopNet.

2.3.6 Comparison with existing methods

We compared PathExt with jActiveModules (Ideker et al., 2002)
and the method developed in He et al. (2011), referred to here as
DEG networks, for the 6 M.tb drug exposure cases with gold stand-
ards. Results were evaluated by comparing with these gold stand-
ards. Typically, both these methods depend on the statistical
significance of DEGs to identify an active sub-network. This could
not be computed for the data considered here as only 1 sample was
available per condition.

We created DEG networks by considering all genes 1.5-fold up-
or down-regulated as DEGs, and retaining edges linking these
DEGs.

The jActiveModules plugin v3.2.1 in Cytoscape 3.8 (Shannon
et al., 2003) allows users to provide inputs other than p-value, and
specify whether larger or smaller values are to be considered most
significant. We provided j log 2ðFCÞj as input, with the specification
that large values be considered significant. jActiveModules was also
executed with the raw fold change values.

2.4 Human tissues
2.4.1 Data

Normalized gene expression data was collected from GTEx
(Carithers and Moore, 2015) (dbGaP accession number
phs000424.v7.p2) for 39 human tissues, corresponding to 23 organs
and 2 cell lines. The signal intensities of each tissue were summar-
ized using the LMFit function in R (Limma package; Ritchie et al.,
2015). The antilog of the fitted value was used for further analysis
as PathExt requires non-negative values. Human protein-protein
interaction network (hPPIN) comprising regulatory, signaling and
metabolic pathways was obtained from (Sambarey et al., 2017a).
This network has 17 062 proteins (nodes) and 208 759 interactions
(edges).

2.4.2 TopNet creation

Since no control was available, we constructed two types of
TopNets—HA TopNets using Ni ¼ SI, and z-score TopNets using
Ni ¼ jz� scoreji. Here, z-score for a gene i in a given tissue was
computed with respect to all tissues, and statistical significance of
shortest paths was computed by randomizing the jz� scorej matrix
1000 times. The size of the TopNet can vary across tissues and
across percentile and false discovery rate thresholds. For the z-score
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TopNets, we explored percentile thresholds in the range [0.001, 1.0]
and q-value thresholds from the set f0.001, 0.005, 0.01, 0.05g in
each tissue to adjust the TopNet size to �300 nodes. Then for the
HA TopNet of each tissue, we explored the same set of percentile
thresholds so as to have a comparable size between HA and z-score
TopNets; the percentiles across tissues were either 0.001 or 0.002 in
all cases. Thresholds for all tissues are available in Supplementary
Table S9. HA TopNets and z-score TopNets for all tissues are pro-
vided in Supplementary Files S4 and S5, respectively.

2.4.3 Gold standards

The human protein atlas (HPA; Uhlén et al., 2015), a compiled list
of Disease genes (Feiglin et al., 2017) and genes from the Disease
Ontology browser of the Mouse Genome Informatics (MGI) data-
base (Bult et al., 2019) were used to validate the results. HPA pro-
vides lists of genes whose mRNA expression is elevated in a
particular tissue. The elevated expression can correspond to one of
three categories: (i) �5-fold mRNA levels in a particular tissue as
compared to all other tissues, (ii) �5-fold higher mRNA levels in a
group of 2–7 tissues and (iii) �5-fold higher mRNA levels in a par-
ticular tissue as compared to average levels in all tissues. The union
of genes from the above three categories form the gold standard.
HPA data was downloaded on the 26th of December, 2018. Disease
genes were compiled by Feiglin et al. (2017) by cross-referencing
data from two databases—Online Mendelian Inheritance in Man
(OMIM, Hamosh et al., 2004), and the Human Phenotype
Ontology (HPO, Köhler et al., 2014). OMIM is a compendium of
associations between genetic variations and predominantly
Mendelian disorders, while HPO provides a standardized vocabu-
lary for working with such phenotypic abnormalities. The Disease
Ontology browser of the MGI lists genes whose mutation is associ-
ated with phenotypes characteristic of human disease (Bult et al.,
2019). A list of housekeeping genes obtained from Eisenberg and
Levanon (2013), comprising of 3804 genes with constant expression
level across a panel of tissues, is used as a negative control to test
whether tissue TopNets are enriched in ubiquitously active genes.

2.4.4 Functional enrichment and ranking of pathways

Enrichment was carried out using the enrichGO function of the R
package clusterProfiler v3.6.0 (Yu et al., 2012), using Biological
Processes as the ontology, and with a Benjamini Hochberg cutoff of
0.01. For each tissue, the background for enrichment was set to be
the list of genes for which both expression and interaction data were
available. Pathway enrichment results for HA TopNets, z-score
TopNets, their corresponding baselines, gold standards, as well as
housekeeping genes, are provided for all tissues in Supplementary
File S6. Pathways enriched in each tissue which are enriched in at
most 10% of tissues (�4 tissues) are listed in Supplementary Tables
S12 (HA TopNet) and S13 (z-score TopNet). Pathways enriched in
the TopNets were ranked based on the weight of the first shortest
path involving a gene from that pathway. Ties were broken based
on the fold enrichment of TopNet genes in a pathway relative to
expectation.

3 Results

3.1 PathExt reveals pathways related to drugs’

mechanism of action in treated M.tb
In a previous study, the Mycobacterium tuberculosis (M.tb) strain
H37Rv was exposed to different concentrations of various anti-
tuberculosis drugs, and the transcriptional response was measured
(GEO accession number GSE71200; Ma et al., 2015). We obtained
the transcriptomic data for 2xMIC (twice the minimum inhibitory
concentration) dose of 18 drugs, for bacteria surviving 16 h of drug
exposure, suggesting a degree of drug resistance. Only one replicate
per MIC per drug and a single untreated control sample were meas-
ured, making robust estimation of differential expression impracti-
cal. For 6 drugs where the mechanism of action is well studied
(Wishart et al., 2018), we obtained gold standard sets of genes

experimentally verified to be perturbed upon drug exposure (Section
2.3.2). In all 6 cases, the Response TopNets generated by PathExt
are concordant with the gold standards, and reveal genes and path-
ways relevant to the action of each drug (Table 1). In contrast, the
genes with 1.5-fold differential expression have consistently poor
overlap with gold standards (Table 1). We discuss the Isoniazid and
Rifampicin exposures in detail below.

3.1.1 PathExt links INH exposure to mycolic acid synthesis and

processing

The anti-bacterial drug Isoniazid (INH) inhibits the synthesis of
mycolic acids, which are long fatty acids found in the cell walls of
mycobacteria (Wishart et al., 2018). The Activated Response
TopNet (selecting for up-regulated paths), Repressed (down-regu-
lated paths) and merged Response TopNets (Section 2) identified by
PathExt were all significantly enriched in gold standard genes
related to mycolic acid synthesis and processing (Table 1,
Supplementary Table S1). In stark contrast, the DEGs with �1.5-
fold differential expression had poor overlap with the gold standard
(Table 1, Supplementary Table S1). The central genes (Section 2.2)
in the Activated Response TopNet consist of genes involved in
mycolic acid biosynthesis, whereas the Repressed Response TopNet
has unsaturated acyl-CoA hydratases responsible for oxidizing fatty
acids, and genes involved in lipid degradation as the central nodes
(Supplementary Tables S4 and S5). These results unambiguously
point to the up-regulation of fatty acid synthesis and down-
regulation of its degradation as a resistance response to INH
exposure.

A previous study (Takayama et al., 2005) consolidated experi-
mental and computational evidence to list the 7 main processes in
the mycolic acid synthesis and processing pathway, namely, the
FAS-I (fatty acid synthetase-I) system, transition from the FAS-I sys-
tem to the FAS-II system, the FAS-II system, cyclopropane synthases
and methyltransferases, oxidation-reduction, Claisen-type conden-
sation and mycolic acid processing. Of the 42 genes described in
their work, interaction and expression data were available for 39, of
which 16 were present in the INH exposed Response TopNet (3.63
fold enrichment; Fisher’s p-value ¼ 1.68e-6), while the 1078 DEGs
comprise only 14 of these genes (Fisher’s p-value ¼ 0.27). Notably,
the TopNet sub-network induced by the 16 genes from the mycolic
acid synthesis and processing pathway (Fig. 2) and their immediate
neighbors, represent all 7 component processes. Interestingly,
NADH dehydrogenases (highlighted in violet in Fig. 2) are also
picked up in this sub-network. It has been hypothesized that M.tb
may gain resistance to INH by regulating NADH dehydrogenase
and the intracellular NADH/NADþ ratio (Miesel et al., 1998). This
is consistent with the fact that the bacteria under study are the ones
which survived exposure to 2xMIC of INH and thus likely to have
triggered their resistance processes.

Finally, as an additional control, we directly compared the
Response TopNet genes with same number of top DEGs in terms of
their functional enrichment (Fig. 2, Section 2.3.4). The genes in the
Response TopNet are enriched in the functional terms relevant to
INH exposure, such as cell periphery, which is the part of the cell
most affected by INH (Wishart et al., 2018), and stress response
terms such as oxidoreductase activity and oxidation-reduction pro-
cess. We also find the term regulation of metabolic processes, which
is an expected energy conservation response. In contrast, the top
401 DEGs are enriched for the terms quinone binding and symbiosis
encompassing mutualism through parasitism, which are not inform-
ative of the condition under study. Together, these results show that
the Response TopNet for M.tb exposure to 2xMIC of INH is indeed
characteristic of its action and reveals genes and processes that
would be missed by a conventional approach relying on differential
gene expression alone.

3.1.2 Rif exposure TopNet reveals the perturbation of nucleotide

synthesis pathway

Rifampicin (Rif) inhibits DNA-dependent RNA polymerase activity,
thus suppressing transcriptional initiation (Wishart et al., 2018).

PathExt: path-based mining of omics-integrated biological networks 1257

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/9/1254/5952670 by guest on 30 O
ctober 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa941#supplementary-data


Once again, the Activated, Repressed and union Response TopNets
are enriched in gold standard genes, whereas the DEGs are not
(Table 1, Supplementary Table S1). The gene rpoB (Rv0667) is cen-
tral in the Activated Response TopNet, effectively recapitulating
previous reports which suggest that Rif resistance can be caused by
transcriptional up-regulation of rpoB (Zhu et al., 2018). The error
prone DNA repair synthesis protein DnaE2 (Rv3370c), and the gen-
etic recombination and nucleotide excision repair protein RecA
(Rv2737c) are also central in this network. Exposure to antibiotics
such as Rif has been shown to result in a recA-dependent SOS re-
sponse, and a corresponding increase in dnaE2 levels (McGrath
et al., 2014). Also, the up-regulation of dnaE2 has been identified as
a critical factor in the emergence of drug resistance both in-vitro and
in-vivo (Boshoff et al., 2003). Other central genes (full list in
Supplementary Table S4) include the 16S ribosomal RNA methyl-
transferase Rv2372c, and the replicative DNA helicase dnaB
(Rv0058). These genes reflect perturbations in the nucleotide syn-
thesis pathway, the very pathway known to be affected upon expos-
ure to Rif. Central genes in the Repressed Response TopNet include,
among others, dnaK (Rv0350) and Rv0232, a transcriptional regu-
lator of the tetR/acrR-family. Disruption of Rv0232 has been shown
to provide a growth advantage to H37Rv in-vitro (DeJesus et al.,
2017). We found that Rv0232 was 4.5-fold down-regulated and
centrally involved in repressed paths, suggesting this as a possible re-
sistance mechanism.

Interestingly, dnaK is central in the Repressed Response TopNet
for Rif, whereas it is central in the Activated Response TopNet for
INH exposure. It has been shown that dnaK is repressed by Rif
(Eltringham et al., 1999), whereas cells with higher levels of dnaK
are more likely to persist upon exposure to INH (Jain et al., 2016).T
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Fig. 2. Response to 2xMIC INH. (a) Gene expression data for a single sample of

M.tb exposed to 2xMIC of INH for 16 h is integrated with a knowledge-based pro-

tein-protein interaction network for M.tb. (b) Sub-network of the Response TopNet

formed by extracting genes from the mycolic acid synthesis and processing pathway

(Takayama et al., 2005), the known target pathway of INH and their immediate

interactors. Every component process of this pathway is represented in the Response

TopNet by at least 1 gene. (c) GO enrichment of Response TopNet gives pathways

relevant to INH exposure, such as cell-periphery and oxidation-reduction process.

Enrichment of an equal number of top DEGs does not provide drug-specific insights
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This result underscores the biological and mechanistic relevance, as
well as the condition-specificity of the TopNets generated by
PathExt.

Although the exact pathway for DNA-dependent RNA polymer-
ase activity is not known, examining the central genes from the Rif
Activated and Repressed Response TopNets along with their imme-
diate interactors provides valuable insights. These genes form two
connected components, connected by two linker genes, fadE18
(Rv1933c) and fadD11 (Rv1550) (Fig. 3). This sub-network high-
lights three major processes, namely, (i) transcription and nucleotide
synthesis, (ii) error-prone synthesis and repair and (iii) lipid metab-
olism. Figure 3 also shows the GO-term based enrichment of the
genes in the Response TopNet, and for an equal number of top
DEGs. The genes in the Response TopNet are enriched for terms
relevant to exposure to Rifampicin, such as translation, which is the
process targeted by Rif, plasma membrane and acyl-CoA dehydro-
genase activity, which are related to lipid metabolism. On the other
hand, the 380 top DEGs are enriched for the terms cell periphery
and plasma membrane, which are not specifically informative of cel-
lular response to the drug.

As demonstrated by the INH and Rif case studies, each Response
TopNet reveals drug-specific mechanisms. Drug-specificity of the
TopNets is further emphasized by the fact that there is no node or
edge common to all 18 Response TopNets, despite the same
knowledge-based network being used as input in all cases.

The Response TopNet is a connected graph with > 50% nodes
in the largest component in each of the 18 drug exposures. This con-
nectedness, reflective of biological pathways, is shown to be non-
random (Section 2.3.5), and not captured by the sub-networks
induced by top DEGs (Supplementary Table S2). This suggests that

our Response TopNet captures crosstalk between the dysregulated
paths, which simple differential gene expression analysis may not.

Taken together, these results show that PathExt captures drug-
specific responsive genes and processes, even when only a single
sample was available per condition.

3.1.3 PathExt outperforms existing DEG-based methods

Table 2 compares PathExt with jActiveModules and DEG networks,
highlighting some of their distinguishing characteristics and compar-
ing the sub-networks identified for each of the 6 M.tb drug exposure
cases with gold standards. The Response TopNet provided by
PathExt is always enriched with gold standard genes, while the mod-
ules identified by jActiveModules with input j log 2ðFCÞj and DEG
networks are enriched in only 2 and 3 cases, respectively. When pro-
vided with raw FC values as input, the networks generated by
jActiveModules are enriched with gold standards in 3 cases
(Supplementary Table S1). This shows that PathExt outperforms
traditional DEG-based methods in these cases, and highlights its
value particularly when there is a paucity in the number of samples.

3.2 Human tissue TopNets reveal tissue-related genes

and processes
In a second set of case studies, we applied PathExt to identify tissue-
related pathways using gene expression data for 39 human tissues in
GTEx (Carithers and Moore, 2015), corresponding to 23 organs
and 2 cell lines. In this scenario, there is no control. Therefore, we
constructed two types of TopNets independently in each tissue
(Section 2.4.2). A Highest Activity TopNet (HA TopNet) where Ni

¼ SI, and a z-score TopNet where Ni ¼ jz� scoreji. Here Ni is the
weight of node i, and SI is the normalized signal intensity (expres-
sion level). The z-score for gene i in a given tissue is computed rela-
tive to all tissues, thus using all tissues as a control for each tissue.

We assessed the tissue-specific TopNets against three gold-
standards (Section 2.4.3): (i) the Human Protein Atlas (HPA) (Uhlén
et al., 2015) where genes with �5-fold higher abundance in each tis-
sue are labelled tissue-specific, (ii) a set of curated tissue-relevant
Disease genes (Feiglin et al., 2017) and (iii) a list of genes associated
with tissue-specific human diseases from the MGI (Bult et al., 2019).
These comparisons are carried out for 37 out of 39 tissues, as corre-
sponding gold standards could not be obtained for the 2 cell lines.
We also use a list of housekeeping genes (Eisenberg and Levanon,
2013) as a negative control. To assess the utility of the z-score
TopNets, we use the same number of genes with the highest jz�
scorej as a baseline control. Likewise, for the HA TopNets, the base-
line used is the set of genes with highest expression levels.

The MGI had �25 genes with both gene expression and inter-
action data for 5 tissues. Of these, the HA TopNets were significant-
ly enriched in tissue-associated genes in three tissues, and z-score
TopNets in four tissues (Supplementary Table S6). In every case, the
TopNet picked up equal or more gold standard genes than the corre-
sponding baseline.

The Fisher’s p-value is plotted for the overlap between the genes
in the TopNets, their corresponding baselines, and gold standards
Disease genes (Fig. 4, Supplementary Fig. S1) and HPA
(Supplementary Figs S2, S3). Since HPA is constructed based on dif-
ferential abundance, as expected, genes with top z-score are highly
concordant with the HPA-derived tissue-specific genes. In all other
comparisons across tissues, genes identified by PathExt agree better
with gold standards than the corresponding baselines. We found 4
exceptions out of 74 comparisons (37 tissues � 2 gold standards).
Even in these cases, the pathways enriched in the TopNets are rele-
vant to the functions of that tissue (Supplementary Information S1).

An ideal tissue-specific network should exclude housekeeping
genes, which by their very definition are broadly active. We find
that the TopNets identified by PathExt have this property, and are
under-enriched in housekeeping genes in all but 1 case
(Supplementary Table S6). This suggests that the paths prioritized
by PathExt correspond to tissue-related functions rather than uni-
versally active processes.

Fig. 3. Response to 2xMIC Rif. (a) Gene expression data for a single sample of M.tb

exposed to 2xMIC of Rif for 16 h is integrated with a knowledge-based protein-pro-

tein interaction network for M.tb. (b) Central genes from Activated and Repressed

Response TopNets as well as their immediate interactors, extracted from the union

Response TopNet for Rif. This module contains genes related to transcription and

nucleotide synthesis, the known target pathway of Rif. Other pathways represented

here are lipid metabolism and error-prone synthesis and repair, both known mecha-

nisms of resistance to Rif (Boshoff et al., 2003; Howard et al., 2018). (c) GO enrich-

ment of Response TopNet gives pathways relevant to Rif exposure, such as

translation. Enrichment of an equal number of top DEGs does not provide drug-spe-

cific insights
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3.2.1 PathExt-identified pathways enriched exclusively in a tissue

correspond to known tissue-relevant functions

Figure 5a shows the top pathways exclusively enriched in the HA
TopNet of selected tissues (Section 2.4.4), along with literature
evidence supporting each pathway-tissue association.
Corresponding results for all tissues are provided in
Supplementary Tables S7 (HA TopNet) and S8 (z-score TopNet).
Some of the pathway-tissue pairs correspond to well-established
functions of the tissue, such as regulation of bile acid metabolic
process in liver (Chiang, 2013), and ethanol catabolic process in
lung (Bernstein, 1982). PathExt reveals a few seemingly counter-
intutive associations as well. For example, sensory perception of
smell is the top pathway exclusively enriched in the testis.
However, prevalence of olfactory receptors in the testis and sperm
has been experimentally verified, and testicular olfactory receptor
signaling has been implicated in sperm flagellar motility (Kang
and Koo, 2012). As another example, regulation of rhodopsin
mediated signaling pathway is enriched exclusively in the pan-
creas. Interestingly, rhodopsin regulates insulin receptor signaling
in rod photoreceptor neurons (Rajala and Anderson, 2010), and
loss of Arf4, a GTPase important for localizing rhodopsin to the
eye and kidney, has been shown to result in damage of exocrine
pancreas in mice (Pearring et al., 2017). This surprising link be-
tween rhodopsin and the pancreas is not picked up by any of the
gold standards or the controls.T
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Fig. 4. Overlap with Disease genes. The p-values for overlap between the gold stand-

ard Disease genes, and nodes from HA TopNets (top) and its corresponding baseline

control, Top SI (genes with highest expression) (bottom) are plotted here.

Horizontal line corresponds to p-value ¼ 0.05. The corresponding figure for z-score

TopNets and top z-score can be found in Supplementary Figure S1, with further dis-

cussion in Supplementary Information S1. The overlap between TopNet nodes and

the gold standard is better than the corresponding baseline
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Figure 5a also highlights the specificity of functions of the differ-
ent regions of the brain. For instance, gamma-delta T cell activation is
enriched in the brain cortex. Gamma-delta T cells have been impli-
cated in Rasmussen encephalitis, a disease characterizing inflamma-
tion of the cerebral cortex (Owens et al., 2015; Varadkar et al.,
2014). The adenylate cyclase-activating dopamine receptor signaling
pathway is enriched exclusively in the putamen basal ganglia region
of the brain. The dorsal region of the basal ganglia comprises of the
putamen, and the caudate nucleus (Lanciego et al., 2012).
Experiments involving homogenates of the caudate nucleus of the rat
brain point at dopamine-sensitive adenylate cyclase as the receptor
for dopamine in the mammalian brain (Kebabian et al., 1972). This
finding could indicate the presence of caudate nucleus cells in the pu-
tamen sample, or a shared function between these two adjacent
regions of the brain. Several processes expected to be ubiquitous,
such as regulation of receptor activity and response to extracellular
stimulus, are enriched in all the tissues under consideration (Fig. 5b).

Overall, PathExt-identified tissue-specific TopNets recapitulate
gold standard genes with known tissue-specific functions, and pro-
vide unique insights into tissue functions, not reflected in conven-
tional differential expression-based analyses.

4 Discussion

We provide PathExt, a computational tool to identify sub-networks
of an omics-integrated biological network, which capture the re-
sponse to a perturbation, or the active processes in a particular con-
dition. PathExt builds on our prior work which mined omics-
integrated networks to (i) identify tuberculosis biomarkers
(Sambarey et al., 2017b), (ii) discriminate between primary and
metastatic melanoma (Metri et al., 2017) and (iii) identify influential
genes in the condition under study (Sambaturu et al., 2016).
Substantially extending our prior work, PathExt provides a general
framework to address all the above questions, while employing
rigorous statistical significance estimation to identify critical paths.
Importantly, PathExt is designed to operate even when a single sam-
ple is available for each condition, and in the absence of an experi-
mental control sample.

In contrast to most DEG-driven methods, PathExt assigns
weights to the interactions in the biological network as a function of
the given omics data, thus transferring importance from individual
genes to paths, and potentially capturing the way in which biologic-
al phenotypes emerge from interconnected processes. Interestingly,
even though connectedness is not used as a criterion to identify sub-
networks, the TopNet resulting from the identified paths forms a
well-connected graph.

While the paths identified by PathExt may not constitute a com-
prehensive or exhaustive listing of all the active, altered processes in
the system, the resulting TopNet can be thought of as a starting

point from which hypotheses can be generated. In this work, we
have gathered, for each drug and each tissue, the top central genes,
along with their fold change for drug exposure (Supplementary
Tables S4 and S5), and z-score for human tissues (Supplementary
Tables S10 and S11). Further examining the network or genomic
neighborhood of these and other genes comprising the TopNet can
provide additional insights, or strengthen the insights gained.

PathExt relies on two user defined parameters, the threshold k
used to select the top k shortest paths, and the q-value for statistical
significance of the paths selected to construct the TopNet. These val-
ues have been set at very stringent values in this paper, allowing us
to focus on the most active paths. Different thresholds can give dif-
ferent layers of information, with different levels of false discovery.

PathExt can facilitate the study of activated and repressed proc-
esses either separately or as a whole, greatly aiding in the interpret-
ation of the results. This is demonstrated by the INH case study,
where the Activated Response TopNet highlighted the up-regulation
of fatty acid synthesis, and the Repressed Response TopNet pointed
to the down-regulation of its degradation. These two processes in
concert suggest a possible resistance response against INH exposure,
whose mechanism of action is the inhibition of fatty acid synthesis.
PathExt also provides three weighting schemes, allowing users to
switch between focusing exclusively on alterations, or studying both
highly active and highly altered processes. Together with the ability
to work with a single sample and in the absence of control, these fea-
tures set PathExt apart from prior methods, providing users with a
powerful, flexible, general-purpose tool for mining omics-integrated
biological networks.
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