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Abstract-Diseases in biological systems may result from 
small perturbations in a complex network of protein-protein 
interactions (PPls). The perturbations typically affect a small 
set of proteins, which then go on to disturb a larger part of 
the network. Biological systems attempt to counteract these 
perturbations by launching a stress-response, resulting in a 
complex pattern of variations in the cell. We present an 
algorithm, EpiTracer which identifies the key proteins, termed 
epicenters, from which a large number of the changes in PPI 
networks ripple out. We propose a new centrality measure, 
ripple centrality, that measures how effectively a change at a 
particular protein can ripple across the network, by identifying 
condition specific highest activity paths obtained by mapping 
gene expression profiles to the PPI network. 

We perform a case study on a dataset (E-GEOD-61973) 
where the gene PARK2 was intentionally overexpressed in 
human glioma (U251) cell line and analyze the top 10 ranked 
epicenters. We find that EpiTracer identifies PARK2 as the 
most important epicenter in the perturbed condition. Analysis 
of the other top-ranked epicenters showed that all of them 
were involved in either supporting the activity of PARK2 
or counteracting it, indicating that the cell had activated a 
stress-response. We also find that 5 of the identified epicenters 
did not have significant differential expression, proving that 
our method is capable of finding information that simple 
differential expression analysis cannot. 

The source code is available at Github 
(https:/Igithub.com/narmada26IEpiTracer). 

Keywords-network mining; influential nodes; ripple central
ity; perturbation analysis; condition-specific network 

I. INTRODUCTION 

Biological systems are the result of a complex set of 
interactions, captured effectively by networks. Diseases typ
ically occur due to a perturbation at one or more locations, 
affecting the nature, abundance and interactions of certain 
proteins in the system [1] [2]. Although the perturbation 
usually affects only a small set of proteins, the effects of 
the perturbation ripple across a much larger portion of the 
network. The reasons for such ripple effects are many fold. 
The proteins in the immediate vicinity of the perturbation 
experience a change as a result of direct interactions with 
the affected proteins. Cascade effects also exist, which affect 
proteins quite distant from the source of the perturbation. 
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Aside from this, the cell may also attempt to restore its 
equilibrium by launching a stress-response, which itself can 
be through multiple mechanisms [3]. Thus a complex 
picture of variations is presented by a cell in any given 
disease condition. Given a cell in the throes of this tug
of-war, it would be very interesting and useful to identify 
the proteins which are the key players in spreading the 
perturbation and/or reacting to it. These key players are 
referred to as the epicenters of that condition. 

Most studies in biology, work with very simplistic models, 
or keep the field of view restricted to a small number 
of parameters. However the underlying biological system 
is actually a large and complex one, and the simplistic 
models lose out valuable information by abstracting out 
these details. Further, a lot of data is generated by microar
ray experiments, which are available publicly on various 
databases. For instance, over 50,000 datasets are available 
on Omnibus [4]. The full potential of this vast amount of 
data is far from being realized because of the lack of good 
analysis and interpretation pipelines. With algorithms such 
as EpiTracer, we hope to bridge this gap, making analysis 
possible for large scale and detailed models, thus more 
closely reflecting the intricate workings of living creatures. 
In this paper, we work with a network consisting of nearly 
half the complement of human genes. 

In the current state-of-the-art, there are no well
established methods to identify the epicenter. Most methods 
require the existence of a causal network, with each edge 
being from a cause to an effect [5] [6]. However the current 
knowledge on causal relationships even for a pair of nodes 
is minimal, and is restricted to only a small set of processes. 
As a result, constructing large causal networks is not directly 
feasible. Network motif based approaches have been used to 
identify important nodes in directed biological networks [7]. 
However this method relies only on network information, 
and has no way of incorporating gene expression data. 
Other methods attempt to identify the node which, when 
intentionally perturbed, would spread the perturbation the 
fastest [8]. This is different from identifying the epicenter of 
a naturally occurring perturbation, which is a more nuanced 



and complicated as well as biologically important scenario. 
In this paper, we have developed an algorithm called 

EpiTracer, which is capable of identifying the epicenter of 
changes in the network, and highlighting the paths through 
which the change propagates. An epicenter must be highly 
active in order to exert its influence, and must have good 
connectivity in order for the influence to spread. We define 
a new centrality measure called ripple centrality, which gives 
a combined measure of a node's activity as well as its 
connectivity, thus giving us a handle on how well influence 
ripples out of that node. This can be used to rank nodes, with 
the top-ranked nodes qualifying as epicenters. The algorithm 
works by first narrowing the search space by identifying the 
sub-network which is most active, retaining only paths with 
high activity in the perturbed condition. We then calculate 
the ripple centrality of each node in the condition-specific 
highest activity network, identifying the top 10 as the most 
important epicenters. We demonstrate the efficacy of the 
algorithm by carrying out a case study on a dataset where 
PARK2 was intentionally overexpressed in human glioma 
(U251) cell line. The algorithm was able to identify the 
perturbed gene as the most important epicenter even though 
it was given no knowledge of the perturbation. 

II. MATERI ALS AND METHODS 

The inputs used by the algorithm are (a) a high-density 
protein-protein interaction network, and (b) condition
specific gene expression profiles. The inputs are explained 
below with respect to the case study. 

A. Network Reconstruction 

A weighted directed human protein-protein interaction 
(PPI) network was reconstructed, with 10,306 nodes and 
74,404 edges. The base network was taken from Khurana 
et aI., 2013, which contains known and predicted protein
protein interactions, genetic interactions and regulatory net
works with directions [9]. To this, metabolic interactions 
were added from KEGG [10]. 

B. Gene Expression Profiles 

Gene-expression data (E-GEOD-61973) for PARK2 over
expression was taken from Array-express. The authors have 
deposited the transcriptome profile as a result of PARK2 
overexpression in U251 cell line and control (GFP) U251 
cell line. Normalization of microarray data was performed 
using GeneSpringX 12.6.1, with Robust Multichip Aver
aging (RMA) [11]. For differential gene analysis, a 1.5-
fold cut-off was applied (P-value :s: 0.05 by T-test with 
Benjamini-Hochberg false discovery rate correction). 

C. Biological Analysis 

Gene set enrichment was performed against KEGG [10] 
database using WebGestalt [12]. The statistical test used 
for analysis was a hypergeometric test with P-value of 
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0.05 with FDR correction. Cytoscape was used for network 
visualization, and the Cytoscape plugin ClueGO [13] was 
used for GO module enrichment. 

D. Condition-specific Networks 

Condition specific networks were constructed by setting 
node weight to be the normalized signal intensity for each 
gene in that condition. wi = SIX where wi is the weight 
of node i in condition x, and SIX is the normalized signal 
intensity in condition x. The edge weight or edge cost was 
taken as a function of the abundance of the participating 
proteins, as 

where ci is the cost of edge i in condition x, and w� , w; 
are the weights of the nodes comprising the edge. Taking 
the inverse makes sure that a highly active interaction has 
very low edge cost. 

For a path with n edges, the cost of the path is given by 
the sum of costs of the edges involved in the path. 

n 

pat hcost = L cf 
i=l 

where cf is the edge cost for each edge in the path, and 
n is the length of the path. A shortest path algorithm will 
preferentially choose edges with the least cost for a given 
source and destination, which in our formulation translates 
to identifying the highest activity path. 

E. EpiTracer Algorithm - Rationale 

The epicenter by definition, should be highly active and 
participate in high activity paths only in the perturbed con
dition. We extract condition-specific highest activity paths 
(CSHAP) by identifying highest activity paths (HAP) in each 
condition, and discarding COlmnon paths. These CSHAPs 
induce a network, referred to as the condition-specific high
est activity network (CSHAN). An epicenter, by definition, 
should also be able to reach many nodes in the network and 
the paths to such nodes from the epicenter should be highly 
active. To capture this, we introduce a new parameter called 
ripple centrality, as explained below. 

1) Closeness centrality: Closeness centrality of a node u 
is defined as the reciprocal of the sum of shortest path costs 
from u to every reachable node v 

1 
C ( u) = =----,------.,.

Lv O"(u, v) 

where 0" ( U, v) is the cost of the shortest path from u to v. 

Because of the way edge costs are formulated, a node u 
with highly active paths to a set of nodes v will have high 
closeness centrality (node Acl in Figure lA). 



A. c. 

Figure 1. (A) Node Ad is the source of highly active paths, and has 
high closeness centrality, However it can only reach 4 nodes, and is not 
a good epicenter. (8) Node Aor can reach 14 nodes, but paths originating 
at Aor have low activity. Thus it is not a good epicenter. (e) Node Arc is 
the source of highly active paths and can reach a large number of nodes 
(7), making it the best candidate for an epicenter. The hexagon represents 
candidate epicenters 

2) Outward Reachability: Given a node u, the number of 
nodes reachable from u is termed its outward reachability. 

Rout(u) = In odesreachablejromul 

where Rout ( u) denotes outward reach ability of u. 
3) Ripple Centrality: Nodes such as node Acl (Fig

ure IA) can have extremely high-activity connections to very 
few nodes. Such a node would have high closeness centrality, 
but would make a poor candidate for an epicenter as any 
perturbation originating at this point would not propagate far. 
On the other hand, node Aor (Figure IB) is able to reach a 
large number of nodes, but the paths originating at node Aor 
are of relatively lower activity. This node would have high 
outward reachability, but would make a poor candidate for 
an epicenter. Thus neither closeness centrality nor outward 
reach ability are sufficient on their own. On the other hand, 
node Arc (Figure IC) has highly active paths to a large 
number of nodes, and is the best candidate for an epicenter. 

We formulate a new measure, ripple centrality, which 
serves as a logical AND between closeness centrality and 
outward reachability. 

Ripplecentrality(u) = C(u) * Rout(u) 

Once the nodes have been ranked based on ripple centrality, 
we split the ranked nodes into two lists - (a) nodes which 
occur only in the perturbed CSHAN, and (b) nodes common 
to both CSHANs. The common nodes are key players both 
before and after the perturbation, and work as global epi
centers. The nodes occurring only in the perturbed CSHAN 
are epicenters specific to the perturbation. 

F. EpiTracer Algorithm 

The EpiTracer algorithm consists of three modules (1) 
highescactivityyaths extracts the paths with cost inside 
a user-defined percentile threshold, (2) condition_spec_han 

uses highescactivityyaths to identify the highest activity 
network specific to each condition, and (3) the main module, 
gecepicenters, uses the above two modules to identify the 
top 10 epicenters in the perturbed condition, as well as 
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Algorithm 1: Function highest_activityyaths 

input: network, percentile 
output: highest activity paths 

I: Calculate all-pairs-shortest-paths and path costs; 
2: Discard paths with length 1; 
3: sorted_paths = sort(paths, asc, path_cost); 
4: return top percentile of sorted_paths; 

Algorithm 2: Function condition_spec_han 

input: network A, network B, percentile 
output: condition specific han 

I: A_hap = highest_activity-paths(A, percentile); 
2: B_hap = highescactivity-paths(B, percentile); 
3: common_paths = A_hap n B_hap; 
4: A_specific_hap = A_hap - common_paths; 
5: B_specific_hap = B_hap - common_paths; 
6: return (A_specific_hap.edges), (B_specific_hap.edges) 

Algorithm 3: Function gecepicenters 

input: network A, network B, percentile 
output: top 10 epicenters (B only, com-
mon) 

I: A_shan, B_shan=condition_spec_han(A, B, percentile); 
2: common = A_shan.nodes n B_shan.nodes; 
3: B_only_nodes = B_shan.nodes - common; 
4: for all node E B_shan.nodes do 
5: C(node) = closeness centrality of node; 
6: Rout(node) = outward reachability of node; 
7: Ripple centrality(node) = C(node) * Rout(node); 
8: end for 
9: ranked = sort(B_shan.nodes, desc, Ripple centrality); 

10: ranked_B_only = ranked n B_only_nodes; 
1 1: ranked_common = ranked n common; 
12: return top 10 in (ranked_B_only, ranked_common); 

the top 10 epicenters common to both conditions. The 
pseudocode for each module is provided in Algorithms 1, 2 
and 3. 

III. RESULTS 

The algorithm was implemented in Python 2.7, using Net
workx1.7. Dijkstra's algorithm [14] was used for shortest 
path computation. The code was run on a xeon server having 
16 cores, and was able to complete analysis of a network 
with 10,306 nodes and 74,404 edges in less than 30 minutes. 

A. System Description 

A summary of network properties is shown in Figure 2A. 
The gene expression profile used is for the overexpression of 
PARK2. PARK2 (PARKIN) is an E3 ubiquitin ligase whose 
dysfunction has been associated with the progression of 
Parkinsonism and human malignancies. However its function 
in cancer remains unclear. In the dataset, microarrays were 



Figure 2. (A) Human PPI network comprising of 10,306 nodes and 
74,404 edges. Color of the node is based on differential expression of the 
gene, red color indicates upregulation and green indicates downregulation. 
Hexagon shape represents epicenters. (A. I) Table of network properties for 
human PPI network (8) PARK2 overexpressed condition specific highest 
activity network (CSHAN); network properties in table 8. 1. (C) Modules 
of differentially expressed epicenters, with immediate neighbours being in 
the same module. (D) List of top most epicenters for global as well as 
PARK2 specific HAN. 

performed to understand the global reprogramming of gene 
expression upon PARK2 overexpression in human glioma 
(U251) cell line. After normalization and filtration, 605 
genes were found to be down-regulated and 1,089 genes 
were upregulated in response to PARK2 overexpression (fold 
change ?: 1.5). In general, genes associated with cell cycle, 
ubiquitin mediated proteolysis, ErbB signaling pathway, 
MAPK, JAK-STAT signaling, WNT signaling, Hedgehog 
signaling pathway and pathways related to lipid metabolism 
were differentially expressed. 

B. Highest Activity Paths (HAPs) 

Shortest paths and path costs between all pairs of nodes 
were identified. It was observed that the number of paths 
in the top 0.2 percentile was twice the number of paths in 
the top 0.1 percentile. Thus the conservative threshold of 
0.1 percentile was chosen. Since the node and edge weights 
are different in the two conditions, the same cut-off results 
in a different set of HAPs in each condition. Interestingly, 
the edges involved in the HAPs themselves form a well
connected network. 

C. Condition-Specific Highest Activity Network (CSHAN) 

Among the HAPs, some paths were found to be common 
to both conditions. Such paths are always extremely active, 
and give us no information relevant to the perturbation. 
Such paths were removed from both networks, giving us 
the condition-specific highest activity paths (CSHAPs), and 
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the networks induced by them (CSHANs). In the data 
under study, 48,949 HAPs were common to both conditions, 
and were removed. This left us with 9,621 HAPs specific 
to the control setting, and 18,779 paths specific to the 
perturbed setting. The properties of these networks are given 
in Figure 2B. 

The perturbed CSHAN has 1,756 genes (Figure 2B), 
of which 75 were down-regulated and 130 up-regulated. 
These belonged to the functional categories of cell cycle, 
MAPK, ErbB, p53 and mTOR signaling pathway, ubiquitin 
mediated proteolysis, regulation of actin cytoskeleton and 
oocyte meiosis. 

D. Tracing the Epicenter 

After extracting the CSHANs, the nodes were ranked 
in descending order of their ripple centrality. The ranked 
list was then separated into two nodes occurring only 
in the perturbed CSHAN, and nodes occurring in both 
CSHANs. Although common paths are removed, common 
nodes can still remain. The nodes common to both CSHANs 
are referred to as global epicenters, and the top 10 are 
illustrated in Figure 2D. PARK2 was identified as the highest 
ranked epicenter among the nodes which are highly active 
only in the perturbed condition. The perturbation in the 
dataset under study was the overexpression of the PARK2 
gene. Although this knowledge was not used to guide the 
algorithm in any way, the algorithm was able to identify 
PARK2 as the highest ranked epicenter of the perturbation. 

1) Biological interpretation: Top ranked epicenters com
mon to both conditions were found to belong to highly con
served and ubiquitously expressed proteins such as TUBB, 
GAPDH, VCL, ACTG1, DYNLL l and ANXA2. In glioma 
cells, RAC 1 promotes cell migration and invasion. APP gene 
is also associated with neurite growth, neuronal adhesion 
and axonogenesis [15]. PRDX1 gene is involved in redox 
regulation of the cell. B2M gene is associated with MHC 
class I antigen presentation. 

Further, biological function of top ranked epicenters active 
only in the PARK2 overexpression condition were revisited 
to understand their significance in this scenario (Figure 2C). 
Out of the ten genes being examined, five genes were 
found to be differentially expressed, namely PARK2, RGS2, 
EPHA2, DNAJC1 and FGF2. PARK2 was highlighted as 
the most important epicenter in the PARK2 overexpressed 
condition. PARK2 is an E3 ubiquitin ligase which negatively 
regulates cell cycle by degrading Cyclin E and D. RGS2, 
the second most important epicenter in the PARK2 over
expression condition, is involved in GO to G1 transition [15]. 
Inhibition of EPHA2 gene leads to stalling of cells in GO/G 1 
phase [16]. FGF2 blocks cell proliferation and causes a 
G21M arrest [17]. When considered together, our analysis 
revealed that most of the top ranked genes were associated 
with cell cycle regulation. 



2) Immediate influence zone of top-ranked epicenter: In 
order to understand the cellular response to the top-ranked 
epicenter specific to the perturbed condition (PARK2 in this 
case), the influence zone around it was analysed. For this, the 
subgraph induced by PARK2 and the nodes up-to two hops 
up/down-stream of PARK2 were considered (Figure 3A), 
and GO enrichment was performed. Since PARK2 is a cell 
cycle regulator, enrichment was performed specifically for 
cell cycle regulation. Interestingly, it was found that the 
PARK2 influence zone was highly enriched for cell cycle 
regulation (Figure 3B), including G2IM transition and G lIS 
transition of mitotic cell cycle, mitotic cell cycle, positive 
and negative regulation of cell cycle. 

The analysis was further focused onto the nodes down
stream of PARK2 in order to gain better insight into the 
influence exerted by PARK2 itself. (Figure 3C). Mapping 
of nodes was done on the basis of differential expression, 
edge weight and epicenter ranking. It was found that many 
downstream genes such as MDM2, CHK l, SQSTMI and 
DUSP I were involved in cell cycle regulation. 

Since overexpression of PARK2 inhibits the progression 
of cell cycle, the expected response from the cell would 
be to modify other regulatory mechanisms of cell cycle 
progression to counteract this arrest. Examination of the 
nodes downstream of the top-ranked epicenter (PARK2) 
showed that this was indeed the case (Figure 3D). Major 
remodeling can be inferred from the GO/G 1 and G liS 
transition. SQSTMI (P63) is involved in exiting of the cell 
from the M phase in the cell cycle. CD44, EPAH2, RGS2 
and ARL6IP l are positive regulators for GO/G l transition. 
MDM2 is an activator of G liS transition as it inhibits 
P53 and Rb proteins. However, CHEK I and DUSP I are 
repressors of G liS phase transition. CHEK I acts as a Cyclin 
E repressor by inhibiting Cdc at the DNA-repair check-point. 
DUSP I is a repressor of the MAPK pathway [18]. FGF2 
and NEK6 are repressors of G2IM phase transition [19]. 

IV. DISCUSSION 

The epicenters identified by EpiTracer are the nodes 
from which highly active paths originate and connect to a 
large part of the network. These epicenters constitute the 
nodes from which most of the influence ripples out in the 
specific condition. Epicenters are not necessarily the source 
of the perturbation. However, we can expect the source 
of the perturbation to be topologically close to the top
ranked epicenters. In the case study, the top-ranked epicenter 
coincided with the source of the perturbation. 

In our study, it was observed that the largest strongly 
connected component (LSCC), which is the largest subgraph 
such that there exists a directed path from node u to node v 

and also from node v to node u for every pair of nodes u, v, 

played an important role in the spread of the perturbation. 
The epicenter was found to be a part of the LSCC in the 
CSHAN. 

lSI 

D. 

Figure 3. Detailed biological interpretation of PARK2 influence zone. (A) 
PARK2 influence zone consists of 118 nodes and 119 interactions. Color 
of node varies based on differential expression of the gene - red color 
indicates upregulation and green color indicates downregulation. Epicenters 
are represented by hexagons. (8) GO enrichment analysis of genes in 
the PARK2 influence zone showed that most of the influenced genes are 
involved in cell cycle regulation. (C) Focusing on the network two hops 
downstream of PARK2 showed that most of the proteins were involved 
in cell cycle regulation. (D) Mechanistic insight of cell cycle deregulation 
upon PARK2 overexpression. 

It was also observed that the LSCC in the CSHAN was 
a subgraph of the LSCC in the parent graph. If the LSCC 
comprises a big enough percentage of the graph, we believe 
it might be possible to narrow the search space of epicenters 
even further by restricting the search to the LSCC alone, thus 
speeding up the algorithm. 

V. CONCLUSION 

We propose a new method, EpiTracer, to trace the epi
center of perturbations in a condition-specific biological 
network. Using only a network with static topology and 
microarray experiments in the relevant conditions, the al
gorithm can identify the condition-specific highest activity 
network (CSHAN), and associate each node in this CSHAN 
with a new measure called ripple centrality. The ripple cen
trality value of a node gives an indication of how influence 
of that node can ripple outwards into the rest of the network. 
The ripple centrality was used to identify the top candidates 
for epicenters specific to the perturbed condition, as well as 
epicenters common to both conditions. A case study was 
carried out on a dataset where the gene PARK2, an E3 
ubiquitin ligase which regulates G 1 to S phase transition by 
degrading Cyclin E and D, was intentionally overexpressed 
in human glioma (U251) cell line. EpiTracer was able to 
identify PARK2 as the most important epicenter specific 
to the perturbed condition. Biological analysis of the other 
top-ranked epicenters showed that all of them had functions 



relevant to cell cycle progression, and highlighted a scenario 
where the most important epicenters were involved in either 
spreading the influence of PARK2 or working to counteract 
its effect. Of the top 10 epicenters in the perturbed condition, 
5 did not show significant differential expression, and yet 
were found to be biologically meaningful epicenters. This 
shows that our analysis can highlight more than what a 
simple differential expression analysis can. 

The algorithm has been tested only on one dataset because 
of the complexity of biological interpretation. However, 
we expect that it will have general applicability, and will 
facilitate the understanding of cell behavior in response to 
perturbation. The algorithm highlights the key players or 
epicenters, which spread the perturbation and/or respond to 
the perturbation. The paths along which the influence of 
these epicenters ripples out is highlighted by the condition
specific highest activity network. These results can be used 
to gain a better understanding of the disease phenotype, and 
how the organism responds to it. 
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