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Summary

Repeat regions, i.e patterns of nucleotides that occur in multiple locations on

the genome, have been shown to play a role in human-pathogen interactions [6].

Studying repeats could help open up new avenues for treatment. However, the

amount of pathogenic material that can be extracted from a patient is limited.

Given the need for a fast diagnosis, waiting for the bacteria to grow and multiply

in the lab is not a viable option. Thus there is a need for a genomics pipeline which

can work with small quantities of cells, work fast, and handle repeat regions.

In this project, we develop an algorithm to link the regions flanking a repeat

given a library prepared with only picogram quantities of DNA. The algorithm ex-

ploits a 9bp overlap between adjacent fragments caused by the library preparation

technique (Nextera). The algorithm was tested with an E.coli K-12 library pre-

pared with 0.25pg of input DNA, and was able to assemble the sequences bridging

26 repeats.

Conventional assemblers struggle with repeat regions. This is because assembly

relies on arbitrary length overlaps between sequenced fragments to help piece

together the whole genome. If the repeat is long, fragments lying at the junction

between the repeat and the rest of the genome will overlap up to the part that is in

the repeat region. However at the junction, groups of reads will suggest different

bases for extension, depending on which part of the genome they are originally

from. Thus assemblers typically assemble up to the boundary of a repeat and

proceed after the repeat.

The algorithm developed in this work accepts the sequences generated by a

vi



conventional assembler, and links them using the 9bp overlap information in the

sequences. The assembled sequences bridge repeat regions and join the non-repeat

regions flanking it. In-silico analysis showed that the cell sequenced for this project

was only 96% similar to its closest known reference genome. Using this reference,

57% of the reported links were validated. 4 more sequences were validated using

biological techniques. This suggests that further biological experiments might

reveal that a greater percentage of the assembled sequences are real. However, the

reported sequences associated with very high confidence levels were found to have

an accuracy of 85.7% with respect to the reference genome.

Also, a stretch of nucleotides from the strain DH10B (NC 010473.1) was dis-

covered in the cells which could not be found in MG1655 (NC 000913.2) [17],

the closest known reference genome. While other assemblers failed to link these

two stretches, the algorithm developed in this project was able to assemble the

bridge between these two sequences. This bridge was subsequently validated with

biological experiments.
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Chapter 1

Introduction

Organisms adapt to changing environments by evolving through the process of

mutation. Mutations are changes in the genetic material or genome of an organism.

Mutations can be broadly classified into (1) point mutation — a change in a single

nucleotide (2) deletion — a stretch of nucleotides is deleted from the genome and

(3) insertion — a new stretch of nucleotides is inserted into the genome.

Mutations occur at a particularly fast pace in bacteria, and play a vital role in

their genetic diversity and ability to survive. Point mutations have been shown to

help rifampicin-resistant M. tuberculosis survive better compared to populations

of rifampicin-resistant cells without this compensatory mutation [4]. Deletions

resulting in gene loss have been shown to help Salmonella enterica survive better

in several growth conditions [11]. Insertions have been shown to impact gene

expression, regulating the expression of their neighboring genes [19].

One type of insertion is when a segment of DNA is copied and pasted in

multiple locations on the genome. Such a mutation creates repeats. In bacteria,

repeats play a role in eliciting mammalian immune response, and also in the

immune system of the bacteria itself [6]. Studying repeats can help gain insights

into the mechanism of interaction between the bacteria and the human, potentially

opening up new avenues for treatment. In this work, we focus on repeat regions.

1



1.1 Motivation

In clinical applications, a genomics analysis is done on both the patient and the

invading pathogen. In such a case, identifying and analyzing the repeat regions

in the bacteria can be instrumental in understanding the mechanism of attack.

However, only a limited quantity of pathogenic cells can be extracted from a

patient. Early diagnosis is helpful, and in fact essential in many diseases. Thus

waiting for the cells to multiply in the lab constitutes an unacceptable delay. There

is a need for a genomics pipeline which can work with small quantities of input

DNA and yet identify and handle repeats.

Genomics pipelines involve three major steps — sequencing, assembly, and

annotation. Sequencing attempts to read the sequence of nucleotides compris-

ing the organism’s DNA. However current technology can only read relatively

short stretches of nucleotides in one go. Therefore multiple copies of the same

DNA molecule are broken up into shorter fragments at random breaking points.

These fragments are then read to give short stretches of nucleotides. Once this is

done, assembly uses overlaps among these fragments to piece together the original

genome. The assembled genome is then annotated and studied.

When a repeat region is longer than the fragments generated during sequenc-

ing, most of the fragments will lie fully within the repeat. This can prevent an

assembler from realizing that these fragments come from different parts of the

genome. In such cases, assemblers will typically collapse all occurrences of the

repeat into one occurrence. Fragments lying at the boundary between the repeat

and non-repeat regions also pose a problem. Such fragments will have the same

sequence in the part that lies in the repeat. However the part that lies outside the

repeat will be different. This confuses assemblers, causing them to stop assembly

at such boundaries. The sequences before and after every occurrence of the repeat

are output as separate stretches of assembled nucleotides.

This is a serious issue because current technology can only read fragments of

length up to ˜800bp when the input quantity of DNA is low. However many
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repeats in bacteria are in the order of 1000s of base pairs.

1.2 Contribution

In this project, we identify a property which promises to help resolve repeats with-

out requiring longer fragments or larger quantities of input DNA. This property is

a result of one of the techniques available for breaking DNA into fragments, called

Nextera.

We develop an algorithm to exploit this property and find the correct ordering

of sequences generated by existing assemblers (contigs). Once the correct ordering

of contigs is found, our algorithm assembles the sequence corresponding to the gap

between the contigs, therefore linking the contigs. The assembled links cross repeat

regions and place the contigs on either side of the repeat in the correct ordering

and orientation.

We apply this algorithm to an E.coli K-12 cell known to have many repeat

regions. Using only 0.25pg of DNA (˜50 molecules), we were able to correctly

order and orient 26 contig pairs which were flanking repeat regions. We were also

able to assemble the sequences linking them, thus generating longer contigs. The

accuracy of these assembled links was 57% when compared to the closest known

reference genome. However, the E.coli cells that were used to prepare the library

were found to be only 96% similar to their closest known reference genome. 12

of the 26 sequences assembled by our algorithm were labeled as incorrect based

on the reference genome. Biological validation was carried out for 7 of these,

which showed that 4 of these 7 sequences were valid. This suggests that a greater

percentage of the predictions might be true. Also, the 26 predicted sequences were

associated with a confidence level, indicating how confident the algorithm was

about the prediction. When considering only the very high confidence predictions

(7 in number), the accuracy with respect to the reference genome was 85.7%.

We also found that the bacteria being studied had one sequence that could
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only be found in the strain DH10B (NC 010473.1), whereas the closest known

reference was MG1655 (NC 000913.2) [17]. Using our algorithm, we were able

to link this unique stretch to sequences from the reference strain. This link was

experimentally validated to be correct.

1.3 Organization

The rest of this thesis is organized as follows. We first provide some Background

relevant to this work, followed by a Literature Survey. We then detail the Problem

Definition and Proposed Approach. The Results are then presented, followed by a

Discussion. At this point, a tabular description of the results at every intermediate

step in the algorithm is provided, which gives an overall feel for the flow of data

through the algorithm. The Experimental Design is then described, including the

properties of the library being studied. The algorithm is then explained in detail,

followed by an exploration into possible Future Work. The references used in this

work are listed at the end, followed by an Appendix.
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Chapter 2

Background and Literature

Review

Before we are able to analyze the genome of an organism, we need to determine

the sequence of nucleotides that make up its genome. This is done by carrying

out sequencing. Current sequencing technology has a limit on the number of

nucleotides that can be read in one stretch. Therefore we first break the DNA

molecules into fragments of length suitable for the sequencing technology. This is

called library preparation.

2.1 Library Preparation

The methods available for library preparation or DNA fragmentation can be

broadly classified into two groups — physical and enzymatic [8, 20].

2.1.1 Physical Methods

Physical methods are the most commonly used techniques to prepare next-generation

sequencing libraries. Sonication applies ultrasonic waves to a sample of DNA.

This produces gaseous cavities in the liquid, resulting in resonance vibration in

the DNA and subsequent breakage. Nebulization forces DNA through a small hole
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using compressed air. This shears DNA into a fine mist which can be collected

for sequencing. Physical methods typically require large quantities of input DNA

(˜nanogram).

2.1.2 Enzymatic

There are two popular methods for enzymatic fragmentation available today. One

method, proposed by New England BioLabs, uses a cocktail of two enzymes. One

of the enzymes generates random nicks in one strand of DNA. The other enzyme

recognizes the nicks produced by the first one and cuts the opposite strand across

from the nick. This produces breaks in double stranded DNA. Any fragments that

have been nicked but not cut on the other strand are repaired by DNA ligase.

Another enzymatic method for breaking DNA was proposed by Illumina, and is

called Nextera. Here a transposase enzyme simultaneously fragments and inserts

adapter sequences into the DNA molecule. This method, termed tagmentation, re-

quires very small amounts of input DNA (picogram). Also, the sample preparation

time is very low. This makes Nextera the library preparation method preferable

in many cases, and is the method utilized in this paper.

In all fragmentation methods other than Nextera, adapters have to be ligated

to the ends of the fragments to facilitate the sequencing process. In Nextera, the

adapters are ligated in the same step as DNA cleavage.

2.1.3 Paired-end Sequencing

In paired-end sequencing, the library preparation step ligates sequencing adapters

to both ends of each fragment. Thus long fragments of DNA are given as input

to next-generation sequencers, and short stretches of the DNA are read from each

end. The two ends are sequenced on complementary strands.

If the length of the fragment is known, this gives us extra information. For

example, if the fragment is known to be 500bp long and we read 100bp from each

end, we will know that the two 100bp sequences are 300bp apart. The fragment
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Figure 2.1: Paired-end sequencing. The DNA fragment is read for short distances from
both ends. If the length of the fragment is 500bp, and we read 100bp from each end, we
know that the two 100bp sequences are 300bp apart.

length is also termed insert size. This is illustrated in Figure 2.1.

The fragment length can be controlled during the library preparation step. If

most of the fragments are of the same length, paired-end sequencing gives us an

estimate of the distance between the two ends of every read. Thus downstream

processing can use this extra information.

2.1.4 Mate Pair Sequencing

Mate pair sequencing [22] libraries are constructed by first breaking the DNA

into very long fragments, between 10 and 15 kbp. These long fragments are

circularized in a wash step, which simultaneously washes away fragments which

were not circularized. The circular DNA is now fragmented and ligated with

sequencing adapters. This method of library preparation generates reads with

very long insert sizes (10 to 15kbp)

2.2 Sequencing Technologies

Sequencing is the process of determining the order of nucleotides present in a sam-

ple of DNA. Some basics about DNA are important to understand the sequencing

process. DNA, or deoxyribonucleic acid, is a double stranded molecule. Each

strand is made up of chemical elements called nucleotides, or bases. There are 4
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Figure 2.2: Chain termination in Sanger sequencing. Two chains are demonstrated
here. First chain is terminated after 11 bases. Second chain is terminated after 7 bases.

types of bases in DNA — Adenine (A), Cytosine (C), Guanine (G) and Thymine

(T). If the bases on one strand are known, the bases on the opposite strand can

be derived from the fact that only complementary bases bind to each other. That

is, A always binds to T on the opposite strand. Similarly, C always binds to G.

2.2.1 Sanger Sequencing (First Generation Sequencing)

This was the first large-scale method to sequence DNA, and was the method used

in the first Human Genome Project. Sanger sequencing uses two basic principles

— chain termination, and gel electrophoresis.

Chain Termination

Consider a single strand of DNA bound to a plate or other medium. If a pool of

bases is allowed to flow across this strand, the bases complementary to the strand

on the plate will bind to it. Now if some of the bases — say some of the Cs -

flowing across this strand are modified such that it is impossible for another base

to bind after it, the chain gets terminated. This is illustrated in Figure 2.2, where

the first line is the single strand of target DNA bound to the plate. The following

two lines show two chains of complementary bases. The first chain is terminated

after 11 bases. The second chain is terminated after 7 bases.

Thus after flowing a mix of normal bases and some chain-terminating Cs, we

will have many complementary strands starting at the same position and ending

at every G in the target DNA. This is done for other bases as well.
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Figure 2.3: Gel electrophoresis. The smaller fragments travel faster across the gel. Thus
the distance to which a fragment has traveled can tell us the length of the fragment.

Gel Electrophoresis

DNA is a negatively charged molecule. Gel electrophoresis exploits this fact by

loading DNA into wells on one end of a gel, and applying a positive charge on the

other end. Thus DNA strands migrate across the gel towards the other end. Due

to friction, small fragments move faster across the gel (Figure 2.3).

After the chain termination step, we have all possible prefixes of the target

DNA fragment. We also know which base is at the end of each prefix. Thus the

length of the prefix will tell us at which position that base occurs. For example,

in Figure 2.2, we know the base at the end of each prefix is C. If we carry out gel

electrophoresis, we can determine that the first chain is of length 11 bases, and

the second chain is of length 7 bases. Thus we know that the target DNA strand

had a G at positions 11 and 7.

Using Sanger sequencing, we can read continuous stretches of ˜800 nucleotides.
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2.2.2 Next-generation Sequencing

Cyclic Reversible Termination

The most popular next-generation sequencing technique follows a chain termina-

tion principle similar to that used in Sanger sequencing. An improvement made

here is that the chain termination is reversible. Thus instead of finding all pre-

fixes ending in one base, we can terminate after every base, read it, reverse the

termination, and carry out the process again. This makes it possible to read mas-

sive number of fragments in parallel, speeding up the process considerably. This

process is called Cyclic Reversible Termination.

After DNA is fragmented using one of the library preparation techniques dis-

cussed above, colonies of DNA are created using a process called PCR (Polymerase

Chain Reaction). The exact protocol followed for the PCR differs from one com-

pany to the other. However they all serve the purpose of creating duplicates of

the existing fragments of DNA. Thus after the PCR step, each colony is a cluster

of duplicates, and every fragment is single stranded.

To read the actual nucleotide sequence, the 4 bases A, C, G and T are tagged

with a fluorescent dye — a different color for each base. The tagged nucleotides

are then allowed to pass over the fragments. The base that is complementary to

the one on the fragment binds to the DNA on each colony. Since the bases being

passed through are tagged with a fluorescent dye, they emit a color. Also, since

the fragments within a colony are duplicates of each other, all the fragments will

emit the same color. This makes the intensity of light high enough for current

optics technology. An image of the emitted colors is captured with a camera,

telling us exactly which base was next.

Illumina flows all 4 bases across the fragments in a single step. Helicos Bio-

Sciences flows one base at a time, making this technique slower.

Substitutions are a common error in this type of sequencing, and the error

rate increases with the length of DNA read in one go. Therefore these techniques

generate reads of length between 25bp and 200bp.
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Figure 2.4: Flowgram generated by 454 sequencing. This flowgram represents the
sequence ACTTAAAGGTTGGACTAC

454 Sequencing

454 sequencing uses sequencing by synthesis. In this method, the single stranded

DNA molecules to be read are loaded into wells. In each iteration, one type of bases

is flowed across the wells. If the base is complementary to the one on the target

strand, polymerase (an enzyme which carries out DNA synthesis) extends the

DNA by one base and releases a chemical called pyrophosphate. 454 technology

uses enzymes sulphurylase and luciferase to convert the emitted pyrophosphate

into visual light. This light tells us which wells had that base.

The output of this sequencing process is a flowgram, as illustrated in Figure 2.4.

The sequence represented by this flowgram is ACTTAAAGGTTGGACTAC. Each

base is represented with a different color. If the DNA strand was extended by

exactly one base, light of unit intensity is generated. If a series of consecutive

positions have the same base (homopolymer), the DNA is extended by that many

bases in one go. Thus the intensity of light will be higher. In this example,

positions 5, 6 and 7 have the base A. Thus the flowgram has intensity 3 at this

point.
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The problem with this technique is that it is difficult to differentiate between

light intensity of n and n+1 or n-1 units, especially when n is long. Thus long

homopolymers pose a serious problem to this type of sequencing.

Ion Torrent

Ion torrent also uses sequencing by synthesis. When synthesis is carried out, an H+

ion is emitted along with the pyrophosphate. Instead of converting pyrophosphate

to visual light, Ion torrent uses a sensor to detect emission of H+ as electric signals.

This avoids the complicated camera and laser setup needed when visual light is

used. However, this technique also struggles to handle long homopolymers.

SOLiD Sequencing

This method uses probes encoded with two-bases. The sequence that is read is

output as a single base, followed by a series of numbers. In Figure 2.5, the sequence

ACTTAAAGG is read as A12030020. A matrix such as the one shown in Fig 4

is then used to decode the actual sequence. For example, since the first base in

the output (A12030020) is A, the first row of the matrix is the relevant row. The

first number is 1. Therefore we look at the column in the first row which has the

entry 1, which happens to be C. This gives us the first 2 bases as AC. Decoding

proceeds in this manner to reconstruct the actual sequence.

Since encoding is done two bases at a time and each base is read twice, the

number of single-nucleotide-variations (SNVs) is less. However, this method forces

the additional overhead of converting from a color base to the nucleotides.

In summary, next-generation sequencing methods can handle millions of DNA

fragments in each run. However a lot of preparation is required between runs.

Thus the overall process is time consuming for long genomes. Also, the addition

of bases at each step is error prone. Thus only short reads can be generated (25bp

to 200bp).
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Figure 2.5: SOLiD base calling gives the output in the color base. A decoding matrix
is used to determine the actual sequence. In this example, the sequence ACTTAAAGG
is encoded as A12030020.

2.3 Pacific BioSciences

Single Molecule Real Time sequencing (SMRT) is a sequencing technique intro-

duced by Pacific Biosciences. First published in [10], this method also uses se-

quencing by synthesis, but immobilizes the DNA polymerase instead of immobi-

lizing the strand. The technology is able to focus on a single nucleotide as and

when it is incorporated by the polymerase. Up to 8,500bp can be read in one

stretch using this technique [18]. However, the method is highly error prone,

and repeated cycles of sequencing need to be performed to compensate for the

high error rate. Thus a large quantity of input DNA ( 50ng) is required, and the

process takes weeks to complete.

2.4 Mapping

Over the years, many genomes have been sequenced and published in public

databases. When a new cell is sequenced, it is helpful to compare it to exist-

ing known genomes. Given a query sequence and a reference sequence, mapping

determines the position on the reference sequence where the query has the best
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alignment.

In general, mapping proceeds in two steps:

1. Filtration step — Find seed(s) on the query sequence and a list of candidate

hits (mapping positions)

2. Verification step — verify each hit, extending around the seed if necessary

When the query sequence is a paired-end read, the mapping algorithm has two

pieces of extra information — (1) the estimated insert size (2) the fact that the

two ends are on complementary strands. Thus reads which map with the correct

insert size and orientation are called concordant reads. Other reads are termed

discordant.

2.5 Genome Assembly

Even after the DNA sequence is read, we do not have the whole genome. Assembly

is the process of utilizing overlaps among reads to piece together the original

genome. Usually, assemblers cannot reconstruct the entire genome. Instead, they

output a set of long assembled sequences, called contigs. In a post-processing step

called scaffolding, assemblers attempt to estimate the distance between contigs.

There are two major approaches to assembly — de-Bruijn graph approach

and overlap layout consensus approach. Further divisions can be made based on

whether the approach uses single end reads or handles paired-end information.

2.5.1 de Bruijn Graph

A de Bruijn graph has all substrings of a certain length as its vertices. Let the

length of these substrings be (k-1). Then, edges are added between two (k-1)-

mers a and b if there exists a k-mer whose prefix is a and suffix is b. Thus, two

vertices of the graph have an overlap of (k-2) characters. Walking along an edge

and merging the overlap gives us the original k-mer.

Thus, genome assemblers using de Bruijn graphs usually expect k as a user-
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Figure 2.6: A de Bruijn graph constructed for the sequence ACTTAAGGGGGTTCA
with k=5.

defined parameter. Once a value for k is chosen, the assembler adds all (k-1)-mers

that occur in the reads to the set of vertices. An edge is added between two

(k-1)-mers a and b if there exists a k-mer whose prefix is a and suffix is b. In

Figure 2.6, we see a toy example to illustrate this construction. Here the genome

is ACTTAAGGGGGTTCA, and sequencing generates 5 reads, each of which is

7bp long.

If k is chosen to be 5, the list of all 5-mers is as shown in the Fig 6. The edges

in the de Bruijn graph are between the first 4 bases and the last 4 bases in every

5-mer. The graph itself is shown on the right.

If sequencing is perfect (no errors), finding the Euler cycle in the de Bruijn

graph will give us the original genome. An Euler cycle is a cycle which visits every

edge exactly once. In the de Bruijn graph, every edge represents a k-mer that

occurs once in the genome. Also, the edges represent the correct order in which

the bases follow each other on the genome. Thus an Euler cycle gives the correct

assembly. It can be proved that every de Bruijn graph constructed from a set of

reads with no sequencing errors has an Euler cycle [5].
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Figure 2.7: Overlap layout consensus approach. End-to-end overlaps among reads are
used to layout the reads with respect to each other. Overlapping sequences are merged
to get the consensus sequence.

This method is highly susceptible to errors in sequencing as a single base error

can change the set of k-mers, and thus the structure of the whole graph. Thus de

Bruijn graph assemblers carry out extensive error correction before constructing

the graph.

If the input reads are single-end reads, the construction proceeds as discussed

above. If the reads are paired-end reads, one approach is to proceed with assembly

by regarding the reads as single end reads. Then the paired-end information is

used in the scaffolding step to help link contigs [16]. Another approach is to correct

the variance in insert sizes among reads, and then use the paired-end reads directly

in the de Bruijn graph [3].

2.5.2 Overlap Layout Consensus

In the overlap layout consensus approach, end-to-end overlaps among reads are

exploited to reconstruct the genome. This is illustrated in Figure 2.7. The same

genome and reads used in the de Bruijn graph example are used here. Overlaps

among reads are used to get the layout of reads with respect to each other. The

constructed graph is shown on the right. Once the reads have been laid out, the

consensus sequence is calculated, and output as the assembled sequence. The

consensus sequence is usually constructed by reporting the most frequent base in

each column.

This method is less prone to single nucleotide sequencing errors as the consen-

sus sequence construction ensures that errors in a few reads is masked. If the input
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reads are single end, construction proceeds as described above. If the reads are

paired-end reads, extension is done one base at a time and the extra information

is used to determine the correct base at every step [2].

2.6 Literature Review

2.6.1 Handling Repeats

Williams et al. [21] have developed an algorithm to estimate the actual size of

a genome including repeat regions by measuring the abundance of k-mers in the

sequences. This technique models the frequency of 21-mers as over-dispersed Pois-

son distributions, and uses this to estimate the number of unique k-mers in the

genome, and their relative abundance. The actual size of the genome is inferred

from these values.

[21] is aimed only to determine the relative abundance of k-mers in the genome,

and the actual size of the genome. No assembly is carried out.

2.6.2 de novo Assemblers

de Bruijn Graphs Approach

IDBA [16] uses the classic de Bruijn graphs approach to de novo assembly. The

improvement implemented by IDBA was to automate the search for the optimal

value for the parameter k. A special version of IDBA, called IDBA ud (uneven

depth) [16], was implemented to handle cases where the coverage depth on the

genome was uneven. The algorithm works by trying different values for k, con-

sidering the reads as well as the contigs generated in previous iterations as input.

Also, progressively deeper depth cutoffs are used to remove contigs with low depth

of coverage and build longer contigs. Paired-end information is used primarily in

the scaffolding step.

SOAP de novo [13] is another classic de Bruijn graphs assembler, requiring the
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parameter k to be tuned by the user. New data indexing and memory-efficient

graph construction have been incorporated into the algorithm to make it faster

and to optimize it for large genomes.

de-Bruijn graphs With Paired-end Information Approach

SPA-des [3] incorporates paired-end information directly into the de Bruijn graph

rather than in a post-assembly scaffolding step. Extensive error correction is

done to handle sequencing errors and chimeric reads. A process called k-bimer

adjustment is used to reduce variance in insert sizes among paired-end reads.

After this process, the estimated genomic distance is known for bireads. This

information is used to guide traversal of the constructed de Bruijn graph, resulting

in the final assembly.

Overlap Layout Consensus Approach

PE-Assembler [2] adapts the classic overlay layout consensus approach to incorpo-

rate paired-end information. This is done in the contig building stage by finding

overlaps and laying out the overlapping reads as per the classic method. However,

PE-Assembler maintains a pool of reads corresponding to the opposite end of ev-

ery paired-end read used in the overlap+layout step. This pool is used to filter out

unlikely extensions and extend the overlapping region one base at a time. Once a

target length is reached, extension switches from single-end overlap + paired-end

support through a pool, to direct paired-end overlaps. This is followed by the

traditional scaffolding and gap filling steps.
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Chapter 3

Problem Definition And

Proposed Approach

Mutations are the driving force behind evolution in all organisms. Prokaryotes

in particular mutate at a fast rate. Repeats, i.e nucleotide patterns that occur in

multiple locations on the genome, are an important type of mutation. In bacteria,

repeats are part of the organism’s immune system, and also play a role in eliciting

mammalian immune response [6]. With the advent of personalized medicine, a

genomic analysis of a patient’s invading pathogen is frequently carried out to

tailor the treatment to the case at hand. In these cases, correctly identifying and

studying the repeat regions in the bacteria can be instrumental in understanding

the mechanism of interaction between the bacteria and the human. However, only

small quantities of the pathogenic bacteria can be extracted from the patient. The

need for quick diagnoses demand quick output from genomics pipelines, precluding

the possibility of waiting for the bacteria to multiply in the lab.

Genomic analyses comprise of three main steps — sequencing, assembly and

annotation. Although genome assembly has been studied for several years now,

repeat regions have remained a major stumbling block for all assemblers.

The length of repeat that can be resolved by an assembler is tightly coupled

with the characteristics of the sequenced library. The length of the fragments
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generated after breaking the DNA for sequencing is called the insert size. When

the repeat region is longer than the insert size of the reads, assemblers typically

collapse all occurrences of the repeat into one occurrence and output this as one

segment, called contig. Also, the sequence up to the repeat and the sequence after

the repeat are output as separate contigs. This is because the reads at the junction

between the repeating and non-repeating regions suggest many valid branches that

the assembler can take. However, the assembler does not have evidence to make

the correct choice.

After assembly is complete, the assembler attempts to order the contigs that it

has been able to find, in a process called scaffolding. This can be done for contigs

which are less than 1 insert size apart by looking for paired-end reads with one

end on each contig. However if the contig borders a repeat region, scaffolding will

find paired-end reads which support all orderings.

This is illustrated in Figure 3.1, Here a repeat region (red) occurs in two places

on the genome. The first occurrence has a blue sequence on the left and a green

sequence on the right. The second occurrence has a green sequence on its left and

a black sequence on its right. The yellow linked blocks in Figure 3.1A represent

the paired-end reads that correspond to this part of the genome. As can be seen,

the repeat region is longer than the insert size.

Figure 3.1B illustrates the problem that assemblers face. Typically only one

occurrence of the repeat region is assembled, and output as one contig (red).

The blue, green and black sequences are output as 3 separate contigs. In the

scaffolding step, the assembler attempts to link these four contigs in the correct

order by looking for a paired-end read which has one end on one contig and the

other end on another contig. In this case, paired-end reads can be found which

link all possible orderings — (blue, red, green), (green, red, black), (green, red,

blue), (blue, red, black), (green, red, black), (black, red, blue).

Also, conventional sequencing methods suffer from the disadvantages of requir-

ing very large quantities of input DNA (˜10 ng) and being very time consuming
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Figure 3.1: A: A repeat region (red) occurs in two places on the genome. First occur-
rence is flanked by a blue sequence and a green sequence. Second occurrence is flanked
by a green sequence and a black sequence. The repeat region is longer than the insert
size of the paired-end library (linked yellow blocks). B: In such situations, assemblers
typically output 4 contigs, one corresponding to each of the blue, red, green and black
sequences. However it cannot correctly resolve the order in which the contigs should be
placed. Paired-end reads can be found which support every order - (blue, red, green),
(green, red, black), (green, red, blue), (blue, red, black), (green, red, black), (black, red,
blue).

(1 - 10 days).

Thus there is a need for a sequencing-assembly combination which can handle

long repeats without requiring large quantities of input DNA.

3.1 Problem Definition

Given a library sequenced with very small quantities of input DNA and a set of

contigs output by any assembler, identify adjacent contigs. Link adjacent contigs

by assembling the gap between them. Output the set of long contigs constructed

by linking input contigs. Also output any contigs for which no links could be

found.

3.2 Possible Solution — Mate Pair Sequencing

One possible method to address this issue is to use mate pair sequencing [22].

This technique is capable of generating sequences with insert size up to 10kbp.

Thus repeats of up to 10kbp can be resolved. However, this sequencing technique

requires very large quantities of input DNA (˜50ng), and takes a long time (weeks)
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to prepare the library.

3.3 Proposed Approach

One method to sequence very small quantities of input DNA is by using Nextera

technology. Using this method, picogram quantities of DNA can be sequenced [15].

When the library is prepared using Nextera, the sequences have a characteristic

property. In order to understand this, we need to understand the cutting mecha-

nism in greater detail.

3.3.1 Nextera Cutting and Its Consequent Property

The enzyme used for cutting in Nextera is a transposon called Tn5. During cut-

ting, the transposon is inserted at a random position in the target DNA, leaving

an overhang of 9bp on either side. The 9bp overhang is filled up on the comple-

mentary strand, after which the DNA is sheared into two pieces. At the end of this

process, the fragment on either side of the cut site has a 9bp repeat (Figure 3.2).

When paired-end sequencing is carried out, the repeated 9bp is read once on

the fragment to the right of the cut site and once on the fragment to the left of the

cut site (Figure 3.3). This results in a 9bp overlap between adjacent fragments.

Let us make the simplifying assumption that Tn5 cuts truly randomly. That

is, every cut-site is unique, and no two molecules are cut at the same place. Also,

let us assume that 9bp is long enough to ensure that the overlapping sequence at

every cut-site occurs only once in the genome. Under these assumptions (and no

errors in sequencing), two paired-end reads involved in an end-to-end 9bp overlap

are next to each other on the genome, and come from the same molecule in the

sample.
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Figure 3.2: Mechanism of cutting using transposon in the Nextera XT kit leaves a 9bp
repeat on the fragments on either side of the cut-site.

Figure 3.3: Paired end sequencing after transposon cutting results in 9bp overlap
between adjacent fragments
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Figure 3.4: A unique chain of reads crossing a repeat region can identify the correct
ordering of contigs

3.3.2 9bp Overlaps And Repeat Regions

As a result of the mechanism of cutting, a 9bp overlap between two paired end

reads indicates that these two paired end reads might be next to each other on

the genome. Therefore we construct chains of reads by utilizing the 9bp overlap.

If a chain links contig X and contig Y, and the reads in this chain do not link any

other pair of contigs, it indicates that contig X and contig Y must be adjacent to

each other. It also gives us parts of the sequence corresponding to the gap between

the contigs. This is illustrated in Figure 3.4, where the gap between contig X and

contig Y is in fact a repeat region (red). However, the fact that reads a, b, c and

d uniquely link these two contigs suggests that contig X is next to contig Y in

the original genome. The reads lying in between the contigs also give us stepping

stones to retrieve the (repeat) sequence that occurs between the contigs.
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Chapter 4

Results

In order to test the proposed approach, an E.coli K-12 library was prepared using

the Nextera XT kit. E.coli was isolated from Top10 competent cells (Life Tech-

nologies), and 0.25pg of E.coli corresponding to ˜50 molecules were used. The

library comprised of 819,798 paired-end reads where each end was 100bp. Thus

the average coverage was ˜35x. Also, the average insert size was 250bp.

Although the Top10 cells were reported to be genetically similar to the DH10B

strain, mapping showed that only 9.62% of paired-end reads could map concor-

dantly to this strain. On the other hand, 96.55% of the reads could be mapped

concordantly to the MG1655 strain (see Chapter 5, Experimental Design). Thus

the reference genome used in this thesis is E.coli K-12 MG1655 [17]. This library

is referred to as N504 in the rest of the thesis. Further details about the library

can be found in the Experimental Design chapter, Chapter 5.

4.1 Assemblers Fail At Repeat Regions

We hypothesize that assemblers fail at repeat regions. To test this, we assemble

the N504 library using 4 different assemblers. The main methods used for assem-

bly are (1) de-Bruijn graphs approach, (2) de-Bruijn graphs with paired-end in-

formation approach, and (3) overlap layout consensus approach. Assemblers from

each of these methods were chosen – IDBA and SOAP de novo (de-Bruijn graphs),
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Assembler N50 Total length No. of contigs

IDBA 76,486 4,489,247 155

SOAP de novo 30,180 4,517,303 961

SPA-des 76,398 4,488,147 179

PE-Assembler 18,013 7,846,089 920

Table 4.1: Summary of assembly results

SPA-des (de-Bruijn graphs with paired-end information) and PE-Assembler (over-

lap layout consensus graphs with paired-end information). Assembly was carried

out after PCR duplicate removal. The results from each of these assemblers are

summarized in Table 4.1. IDBA was chosen as the assembler for this work.

On mapping the generated contigs to the reference genome, it was discovered

that 32 of the gaps between contigs were common to all the assemblers. 26 of these

gaps could be explained by repeats (Figure 4.1). The shortest repeat was ˜800bp

long. The large number of repeats in the sequenced cells can be attributed to the

fact that the DH10B strain has been proved to have a 13.5-fold higher mutation

rate than wild-type E.coli [7], caused by a drastic increase in insertion sequence

(IS) transposition. A full table describing the contig gaps and the repeat regions

causing them can be found in Appendix A.

Thus it can be demonstrated that repeat regions longer than the insert size of

the library cannot be handled by current-day assemblers.

It is interesting to note that for every assembler, some contigs could not be

mapped to the MG1655 reference genome [17]. In the case of IDBA, one con-

tig could not be mapped to the reference genome. This contig was successfully

mapped to DH10B (NC 010473.1).

26



Figure 4.1: Assemblers fail at long repeats. IDBA ud (uneven depth), SOAP de novo,
SPA-des and PE-Assembler fail at common locations highlighted by red boxes.
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Figure 4.2: Reads were mapped to the closest known reference, and overlap length be-
tween adjacent paired-end reads was calculated. 9bp was found to be the most common
overlap length

4.2 Nextera Leaves A 9bp Overlap

In order to verify that Nextera indeed leaves a 9bp overlap between adjacent reads,

we mapped the sequenced library to the closest known reference genome. In our

case, the closest known reference genome is E.coli K-12 MG1655 [17]. Mapping

was carried out using BWA [12]. The length of overlap between adjacent paired-

end reads was calculated, and the frequency of occurrence of each overlap length

was measured (Figure 4.2). It was found that 9bp was indeed the most frequent

overlap length.

In the N504 library, there are 15,573,574 pairs of paired-end reads involved

in 9bp overlaps. Among them, only 452,987 are considered correct, i.e., they

are mapped adjacently with 9bp overlap on the reference genome. This means

that most of the 9bp overlaps are incorrect. We developed a de novo method to

reduce the number of false adjacent paired-end reads (see Chapter 6, Algorithm,

Constructing overlaps graph). After filtering, 75% of the overlaps retained by our

method were found to be true with respect to the reference genome. 3% true
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Start pos. End pos. Match Mismatch

273038 274233 1195 0

573533 574728 1195 0

686793 687988 1195 0

1393507 1394702 1195 0

2098932 2100127 1195 0

2286030 2287225 1195 0

3126907 3128102 1195 0

3362177 3363372 1195 0

3648588 3649783 1195 0

2063342 2064537 1190 5

Table 4.2: Transposon repeat being studied. The repeat occurs in 10 locations on the
genome. 9 of the occurrences are identical

positives were missed.

4.3 9bp Overlap Chains Link The Regions Flank-

ing A Repeat

Since the Tn5 transposon used for cutting in the Nextera kit cuts the genome

nearly randomly, we expect that each occurrence of a repeat is cut at different

positions. To study this, we identify a repeat of length ˜1,100bp. This repeat

occurs 10 times in the E.coli genome. 9 of the occurrences are exactly identical,

while the 10th occurrence has a 5bp mismatch (Table 4.2).

Upon carrying out a BLAST [14] analysis, it was found that this sequence cor-

responds to “Escherichia coli str. K-12 substr MG1655 beta-galactosidase (lacZ)

gene, complete cds; insertion sequence IS5 transposase (insH) gene, complete cds;
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and lactose permease (lacY) gene, partial sequence”. This indicates that this is a

Transposable Element repeat, and is one of the repeat types that occurs frequently

in humans as well. This repeat is referred to as the transposon repeat in the rest

of this thesis.

We look for chains crossing the transposon repeat by discovering supported

overlaps and chaining the overlapping reads. It was found that 7 of the 10 occur-

rences had chains crossing it. We were able to identify 2 chains per repeat where

the reads used in the chains were not used to link any other contig pairs. The

mapping locations of the reads on the reference genome revealed that the chains

indeed had distinct cut sites (Figure 4.3).

Figure 4.3: Read chains with 9bp overlap cross 7 out of 10 occurrences of a transposon
repeat and link the flanking contigs. Mapping locations showed that the 7 occurrences
were cut at different cut-sites, enabling us to link the correct contig pairs. X axis indi-
cates the position of each read, offset from the repeat’s start position. Y axis indicates
the position of each repeat on the E.coli K-12 MG1655 genome.
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4.4 Repeats Resolved

An algorithm was developed to exploit the 9bp overlap property of Nextera li-

braries. The algorithm accepts a library prepared using Nextera technology with

very small quantities of input DNA (˜picogram). It also requires the contigs gener-

ated by any assembler as input. The algorithm first discovers 9bp overlaps among

reads, constructing an overlaps graph in the process. It then finds reads which can

serve as anchors on the contigs, and looks for a path in the overlaps graph which

can lead from one contig to another. These contig pairs are declared potentially

adjacent. All the contigs potentially adjacent to a given contig, along with the

overlap chain linking them, forms the contig adjacency graph for that contig. A

contig adjacency graph is constructed in this manner for every contig.

Local assembly is carried out to fill the gaps in the overlap chains, giving us

longer contigs constructed by linking input contigs. These longer contigs are then

filtered using split reads — reads where the two ends map across the boundary

between the contig and the newly assembled sequence. If any adjacency is a sub-

sequence of another, the two are merged.

Now, each contig can only be next to one contig on the left and one contig on

the right. Thus, each contig will have degree ≤1 on each side. Thus the reported

adjacencies resulting in contigs with degree >1 are identified. The candidate

adjacencies are ranked, and the highest ranked one is retained. After all contigs

have≤1 contig on each side, the final adjacencies are ranked again to determine the

level of confidence the algorithm has in that result. This final list of long contigs,

along with the confidence scores, is given as output (see Chapter 6, Algorithm).

Any input contigs not participating in the assembled longer contigs are also added

to the output.

The flow of results through the algorithm is shown in the Intermediate Results

section (Section 4.7 ) in Tables tables 4.4 to 4.13.

Mapping revealed that some short contigs could be mapped to multiple lo-

cations on the genome, because of which these short contig could be adjacent to
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Figure 4.4: Ranking of assembled adjacencies can be cut off at various thresholds.
Different thresholds result in different trade-offs between accuracy and improvement in
n50.

more than 2 contigs. Thus the degree restriction was imposed only on long contigs

(≥ 3,000bp) during ranking.

In the N504 library, 26 longer contigs were presented as output at the end

of the ranking process. These 26 adjacencies were created by linking 39 input

contigs. The final adjacencies were further divided into 3 categories based on the

confidence level — very high confidence, high confidence, and low confidence.

In-silico validation was carried out by comparing the generated longer contigs

against the reference genome. Also, the improvement in n50 because of the longer

contigs was calculated. The results are summarized in Figure 4.4. A tradeoff

between the accuracy and % improvement in n50 is immediately apparent.

4.5 Experimental Validation

For 5 longer contigs (adjacencies), the input contigs were mapped next to each

other on the reference genome, but an insertion was predicted between the two

contigs. Out of these, 4 longer contigs were of relatively higher confidence. Also,
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one input contig could not be mapped to the MG1655 reference genome. Our

algorithm was able to link this contig to 2 other contigs which were mapped

successfully to MG1655, providing the missing bridge between these regions. These

cases were given for biological validation to a group in the Genome Institute of

Singapore.

To verify whether the predicted inserts were really present in the sequenced

cells, primers were designed on either side of the predicted insert. The primers

were chosen such that they belonged to the regions which map to the MG1655

reference genome. A standard Taq Polymerase (NEB) kit was then used to amplify

the region in the between these primers. The length of the sequence between the

primers in the presence/absence of the predicted inserts is known. Thus the length

of the sequence amplified during PCR gives us an indication as to whether or not

the predicted insert is present in the cells.

The results of the validation are as show in Table 4.3. The first 5 cases in the

table are the cases where both contigs map to the MG1655 reference. The contigs

map next to each other, but our algorithm predicted an insert. The validation

was inconclusive in one case (case 4) while another case (case 1) showed that the

sample had multiple types of cells. Some cells had the predicted insert while others

did not. 1 insert (case 3) was conclusively proved to be true, while 2 were proved

wrong. As can be seen from the table, the cases which were proved real were the

cases with relatively higher confidence levels.

For the 2 cases where our algorithm assembled the bridge between a sequence

mapping to MG1655 and a sequence mapping to DH10B (case 6, 7), both cases

were validated to be true. That is, the cells in the sample had the predicted bridge.

Ranking found that one of the two was a sub-sequence of the other. Thus the two

sequences were merged, and the longer sequence was presented in the final output.

The adjacencies validated here were chosen because the contigs involved were

mapped next to each other on the reference genome, but without the predicted

insert. However, all the adjacencies were from the low and very low confidence
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groups. Testing the adjacencies in the higher confidence groups might reveal that

a greater fraction of the predictions are in fact present in the sequenced cells.

Sl.
no.

Left
contig
length

Right
contig
length

Linked
contig
length

Predicted
insert

Valid insert?
Confidence
level

1 162502 45477 209426 1447

Some cells
had inserts
while others
did not

Low

2 8582 1744 11772 1446 N Very low

3 81032 506 82265 727 Y Very low

4 81032 27853 110085 1200 Inconclusive Very low

5 31469 1638 34254 1147 N Low

6 11125 845 12152 182 Y Low

7 12729 845 13675 101 Y Low

Table 4.3: Longer contigs 1 through 5 are cases where both contigs map next to each
other on the MG1655 reference, but our algorithm predicted an insert. The validation
was inconclusive in 1 case (case 4), while another case showed that the sample had
multiple types of cells (case 1). One case was conclusively validated, while 2 cases were
proved incorrect. Both predictions involving the contig not mapping to MG1655 (case
6, 7) proved to be correct.

4.6 Discussion

Our approach has successfully demonstrated that the 9bp overlap property of

Nextera can be used to handle repeat regions. This addresses a gap in existing

technology since conventional assemblers struggle with repeats. We were also able

to find the bridge between a sequence from the MG1655 strain and the DH10B

strain that were adjacent in the sequenced cells. This was validated experimentally,

proving the efficacy of the algorithm.
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For the N504 library used, 9bp overlap chains could be found linking 100

real adjacencies (real with respect to the MG1655 reference genome). Using the

filtering criteria detailed in this thesis, only 14 of these could be unambiguously

retained in the final list. Relaxing these filtering criteria might retain more of the

real adjacencies, with an associated loss in accuracy. Also, IDBA generated 132

contigs, indicating that 131 adjacencies should have been discovered. However

only 100 contig pairs had 9bp overlap chains linking them. This suggests that for

the remaining 31 contig pairs, some part of the segment connecting them does not

appear in the reads. This problem may be addressed by using more than 1 input

library.

Although this project works exclusively with bacterial genomes, it is conceiv-

able that the approach will work with human genomes as well. A quick back-of-

the-envelope analysis will illustrate this point. The E.coli genome is ˜4,500,000bp

long. Since the insert size is 250bp on average, this would imply ˜18,000 fragments

per genome. ˜50 genomes were sequenced, giving us an ideal 900,000 fragments

and cut-sites. If no two cut-sites are the same, this gives us one cut-site per 5

bases. This was sufficient information to provide overlap chains for 100 out of 132

gaps. For a human genome, which is ˜3 billion bp long, an insert size of 250bp

would imply 12,000,000 fragments per genome. If 10 genomes are sequenced, this

gives us 120,000,000 fragments and cut-sites. If no two cut-sites are the same, this

gives us one cut-site per 25 bases. With a read length of 100bp, this should give

us enough information to find overlap chains covering most of the genome.

4.7 Intermediate Results
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Input No. of reads(2x100) Coverage

Reads 819,798 35.35x

PCR duplicate removal 809,714 34.91x

Table 4.4: Input reads

n50 Total length No. of
contigs

Longest
contig

Shortest
contig

IDBA contigs 76,486 4,489,247 155 254,174 222

Table 4.5: Input IDBA contigs

No. of supported 9bp overlaps 581,632

No. of vertices in supported overlaps 520,017

Total no. of reads 809,714

Max. degree 89

Table 4.6: Constructing overlaps graph

n50 Total length No. of
contigs

Longest
contig

Shortest
contig

Trim contigs 76,286 4,454,629 133 253,974 266

Table 4.7: Finding Anchors
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no. of potential adjacencies 1292

mp. of contigs in potential adjacencies 123

Validation

no. of contigs mapping to reference
genome

132

no. real w.r.t reference genome 100

no. of contigs in real adj 112

no. of potential adj using the unmapped
contig

2

Table 4.8: Constructing contig adjacency graph

no. of adj assembled 235

no. of contigs in assembled adj 90

Validation

no. real w.r.t reference genome 69

no. of contigs in real adj 65

no. of assembled adj using the unmapped
contig

2

Table 4.9: Local assembly

no. of adj retained after finding split reads 73

no. of real adj 32

no. of adj with split reads using the un-
mapped contig

1

Table 4.10: Split reads
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no. of adj discarded after mergin 6

no. of adj after merging using the un-
mapped contig

1

Table 4.11: Mergin sub-sequences

no. of adj after ranking with deegree 26

no. of real adj 14

no. of adj using the unmapped contig 1

Table 4.12: Ranking

no. of
adj

accuracy (%) n50 improve-
ment (%)

very high confidence 7 85.7 0

very high + high confidence 14 57 6

very high + high + low confi-
dence

26 53.8 15.5

adj using unmapped contig
confidence level

low

Table 4.13: Ranking results
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Chapter 5

Experimental Design

5.1 Genomic DNA

Genomic DNA for E.coli was prepared by the Genome Institute of Singapore

(GIS). E.coli DNA was isolated from TOP10 competent cells (Life Technologies).

The cells are genetically similar to the DH10B strain. The genotype is F− mcrA

∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 recA1 araD139 ∆(ara-leu)

7697 galU galK rpsL (StrR) endA1 nupG λ−.

5.2 Library Preparation

Isolated DNA was quantified using Qubit ds HS assay (Cat no.Q32854, Life Tech-

nologies) and diluted to 0.25pg. Tagmentation was performed by Nextera XT kit

(Cat no. FC-131-1024, Illumina).

5.2.1 Tagmentation Protocol

For 0.25pg E.coli library, 0.5µl of DNA (0.488pg/µl) was incubated with 3µl of

tagmentation buffer (Nextera XT kit), and 1µl of tagmentation mix and 1.5µl

of nuclease free water (Promega). The reaction was incubated at 55◦C for 8

minutes. The reaction was neutralized by adding 1.5µl of neutralization buffer

with 5min incubation at room temperature. PCR amplification was performed
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Figure 5.1: Profile before and after PCR

by adding 7.5µl of Nextera PCR buffer and 2.5µl of PCR index primer N504 and

N706. This was then cycled under standard Nextera XT conditions for 15 cycles.

The amplified DNA was cleaned up using Ampure beads (Ampure XP, A63880,

Beckman coulter) at 0.6x beads to volume ratio and eluted in 12µl of nuclease

free water (Promega) to select a size range from 150 to 500bp. Libraries were run

on High Sensitivity Bioanalyzer (Agilent) for size verification and sequenced by

lllumina Hiseq as a paired end 101bp. The Agilent profiles before and after PCR

are shown in Figure 5.1.

After sequencing, 819,798 paired-end reads were generated, where each end

was 100bp. PCR duplicate removal caused the number of paired-end reads to
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Figure 5.2: Analysis with fastqc shows a bias in the first 30bp

reduce to 809,714. The average coverage was 35x.

5.3 fastqc

An analysis with fastqc [1] showed that there is a bias in the first ˜30bp (Fig-

ure 5.2). The consensus sequence in the first 9bp was found to be GTTTTAAAC.

The consensus was the same on both ends of the paired-end reads.

5.4 Reference Genome

The isolated Top10 competent cells (Life Technologies) are reported to be similar

to the E.coli K-12 DH10B strain. Sequenced reads were mapped using BWA [12]

to the DH10B reference genome (NC 010473.1). It was found that only 9.62% of

reads mapped concordantly to this genome. Since the DH10B strain is a result of

serial genetic recombination and is derived from the wild type strain MG1655 [7],

we tried mapping the reads to the E.coli K-12 MG1655 strain (NC 000913.2) [17].

This time 96.55% of reads could be mapped concordantly. Thus we use the E.coli

K-12 MG1655 as the reference genome in the rest of the thesis.
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5.5 Insert Size

Insert sizes were calculated by mapping the reads to the reference genome using

BWA [12]. The insert size distribution is as shown in Figure 5.3.

Figure 5.3: Insert size distribution of N504 library. Most frequent insert size = 267.
Peaks at insert size 103 and 200 (Note: reads are 2 x 100)

5.6 Coverage

If a read cannot be mapped in one stretch or if only one end of a paired-end

read can be mapped, the read is marked by BWA [12] with a mapping quality

of zero. When considering only reads with non-zero mapping quality, ˜3% of the

genome had no coverage. This indicates that there are several repeat regions which

are sufficiently similar to each other to confuse the mapping software. Table 5.1

contains details of the coverage gaps. The frequency of occurrence of various gap

lengths can be found in Figure 5.4.
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Largest coverage gap 56595

Smallest coverage gap 1

Percent uncovered 3.2319

Number of gaps 88

Table 5.1: Details of coverage gaps left when the N504 library was mapped to E.coli
K-12 MG1655. Only reads with non-zero mapping quality are considered

Figure 5.4: Frequency of occurrence of different gap lengths when the N504 library
was mapped to E.coli K-12 MG1655. Only reads with non-zero mapping quality are
considered.
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Chapter 6

Algorithm

6.1 Overview

The aim is to find 9bp overlap chains linking adjacent contigs, and assemble the

gaps in the chains. Here the contigs are part of the input provided by the user.

If paired-end read b has a 9bp overlap with read a on the left and with read c on

the right, reads a, b and c form a 9bp overlap chain.

However, PCR duplicates can confuse assemblers and make them believe a

branch has more support than it actually does. Therefore we require that PCR

duplicate removal be carried out before assembly. To this end, we have imple-

mented a PCR duplicate removal tool, described briefly in the section PCR dupli-

cate removal. Duplicates can also be removed using any tool of the user’s choice.

Given the reads after PCR duplicate removal, we construct an overlap graph by

discovering end-to-end 9bp overlaps among paired-end reads and chaining them

together. Paired-end reads which map uniquely to one contig are identified as

anchors. We use these anchors as starting points, and traverse the overlaps graph.

If an overlap chain starts from an anchor on one contig and leads to an anchor

on a different contig, the two contigs are declared potentially adjacent. Thus we

discover all chains linking every contig to the other contigs. The collection of

chains linking a given contig to other contigs forms a graph, termed the contig
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adjacency graph.

Every chain consists of paired-end reads joined end-to-end by the 9bp overlap.

The sequence between the two ends of every paired-end read is as yet unknown.

Thus we traverse the contig adjacency graph, carrying out local assembly to fill

the gap between the two ends of every paired-end read in the chain. This allows

us to recover the exact sequence appearing between adjacent contigs.

At this point in the process, we have a list of contig pairs identified to be

adjacent, and the sequence between them assembled using local assembly. Ideally,

a contig should only have two other contigs adjacent to it on the genome — one

to the left, and one to the right. However if a repeat region is repeated identically,

9bp overlap chains and assembly can still report more than 2 contigs as adjacent

to a given contig. In these situations, we use heuristics to rank the adjacencies

(adjacent contig pairs) and report the highest ranked ones.

Thus we output a list of longer contigs generated by linking adjacent input

contigs. Adding the input contigs which did not participate in any adjacencies

gives us the final output.

Each step is described in detail in the following sections.

6.2 PCR Duplicate Removal

Two reads are considered PCR duplicates if the corresponding ends have the same

sequence. The read lengths need not be the same. In Figure 6.1, read a and read

b are PCR duplicates. The left end of read a is (X+P)bp long, and the left end of

read b is Xbp long. The first Xbp in these two sequences is the same. Similarly,

the right end of read a is Ybp long and the right end of read b is (Q+Y)bp long.

The last Ybp in these two sequences are the same.

Once a set of reads is found to be PCR duplicates of each other, we merge them

and output the consensus sequence. Thus the PCR duplicate removal algorithm

proceeds as follows.
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Figure 6.1: Read a and read b are PCR duplicates. Although the corresponding ends
are not of the same length, the sequences match up to the available length.

Algorithm 1: Function form clusters

input : list of sequences
output: list of clusters such that sequences in the same cluster are similar

to each other
begin

Initialize empty list of clusters for every sequence in input list do
Compare the sequence with first sequence in every cluster;
if this is similar to any cluster then

Add to that cluster;
else

Create new cluster with this sequence;
end

end

end

Algorithm 2: Function merge duplicates pass1

input : list of 5‘ end reads; list of 3‘ end reads
output: list of 5‘ end reads and corresponding 3‘ end reads after merging

PCR duplicates
begin

Hash first 9bp of all reads. Group together all reads with same sequence
in first 9bp for each group do

Call form cluster for reads with same sequence in first 9bp // this

will result in clusters where one end of the

paired-end read are similar to each other

for each one-end cluster do
Call form cluster on other end // if the read in the

original cluster is the 5‘ end, use the 3‘ end here

and vice-versa. Now the reads in one cluster are

PCR duplicates

Output consensus sequence for both ends as the merged read
end

end

end
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N504 No. of reads (2 x 100) Coverage

After sequencing 819,798 35.35x

After PCR duplicate re-
moval

809,714 34.91x

Table 6.1: Statistics for PCR duplicate removal step for the N504 library.

Function merge duplicates pass1 is called with all the reads generated by se-

quencing as the input. This function groups together all reads which have exactly

the same sequence (no mismatch) in the first 9bp. Thus many clusters are formed,

with each cluster consisting of reads with exactly the same sequence in the first

9bp. The algorithm then checks the sequence in the rest of the read. If the se-

quences are the same (ungapped alignment, up to 4% mismatch), the reads in the

cluster are considered duplicates of each other, and a single merged read is gener-

ated to represent the entire cluster. In this manner, one pass of duplicate removal

is carried out. In the second pass, the reads generated by merge duplicates pass1

are considered. In function merge duplicates pass2 , we form the initial clusters

by considering the second 9bp (bases 10 to 18) of the same end of the read that was

used to form the initial clusters in merge duplicates pass1. That is, reads with

the same sequence (no mismatch) in bases 10 to 18 are grouped together. Further

filtering and merging proceeds in the same manner as in merge duplicates pass1.

This handles the case where two reads are really PCR duplicates, but a se-

quencing error in the first 9bp causes them to be placed in different clusters by

merge duplicates pass1. In this work, the similarity measure used was hamming

distance.

Table 6.1 shows the statistics after this step for the N504 library. It can be

seen that there were only 1.2% PCR duplicates.
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Figure 6.2: A paired-end overlap between a and b is considered to be true only if at
least 1 supporting read s covers the overlap and has at least 10bp on either side of the
overlap. Thus X and Y are ≥ 10bp long. A mismatch of up to 3bp is allowed.

6.3 Constructing Overlaps Graph

To construct the overlaps graph, we need to find end-to-end 9bp overlaps among

paired-end reads. When working de novo, 15,573,574 end-to-end 9bp overlaps

were detected. However only 452,987 read pairs were mapped next to each other

on the reference genome with a 9bp overlap. To filter the overlaps detected de

novo, we consider the overlap to be true only if there is another read supporting

the overlap. That is, given two paired-end reads with an end-to-end overlap, we

look for a single-end read that maps onto the overlapping ends in such a way that

it covers the overlap. Such a supporting read indicates that the sequence resulting

from merging the overlapping ends of the paired-end reads actually exists on the

genome.

This is illustrated in Figure 6.2, where an end-to-end 9bp overlap exists between

reads a and b, and also between reads a and e. A supporting read s exists for the

overlap between a and b. That is, s covers the overlap B, the sequence X (from

read a) to the left of B, and the sequence Y (from read b) to the right of B. X and

Y must be at least 10bp long, and up to 3 mismatches are allowed. However, no

read supports the overlap between a and e. Thus (a, b) is a supported overlap,

while (a, e) is not. Note that X+B+Y should be the entire read s. That is, the

entire sequence of read s must support the overlap.

As can be seen from the Figures 6.3, 6.4, 9bp is the most frequent overlap

length with support. After filtering, 75% of the overlaps retained by our method
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Figure 6.3: Potential overlaps distribution. All end-to-end overlaps detected de novo
do not follow the expected pattern

No. of supported 9bp overlaps 581,632

No. of vertices in supported overlaps 520,017

Total number of reads 809,714

Max degree 89

Table 6.2: Statistics on overlaps graph for N504 library.

were found to be true with respect to the reference genome. 3% true positives

were missed.

In the overlaps graph, every paired-end read is considered a vertex, and an

overlap is considered an edge. Thus in Figure 6.5, a, b and c are vertices, and the

edges are (a, b), and (a, c). All edges in the overlaps graph are undirected. Read

s is the read which supports both the overlaps.

Table 6.2 shows the details of the overlaps graph in the N504 library. As can be

seen from the table, only 62% of the reads participate in supported overlaps. This

could be caused by the loss of some information during the sequencing process. It

could also be caused by sequencing errors in the overlapping 9bp.

Under ideal conditions, two paired-end reads involved in an end-to-end 9bp

49



Figure 6.4: Supported overlaps. After filtering potential overlaps based on supporting
reads, 9bp is the most frequent overlap length.

Figure 6.5: Paired-end read a has end-to-end overlaps with both read b and read c.
Read s supports both overlaps. Thus the overlaps graph has vertices a, b and c. Edges
are (a, b) and (a, c). All edges in the overlaps graph are undirected.

50



Figure 6.6: Degree distribution in overlaps graph for the N504 library. ˜92% of the
vertices have degree ≤ 4.

overlap are actually next to each other on the genome, and come from the same

molecule in the sample. This is only true if we assume the following:

• every cut-site is unique, and no two molecules are cut at the same place

• 9bp is long enough to ensure that the overlapping sequence at every cut-site

occurs only once in the genome

• there are no errors in sequencing

If these assumptions were true, every paired-end read would have exactly 1

overlap on its left and 1 overlap on its right. As can be seen in Figure 6.6, most

vertices (paired-end reads) have degree 1 or 2 in the overlaps graph. However the

maximum degree is 89. Also, ˜92% vertices have degree ≤ 4. Thus we can infer

that although the above assumptions are not strictly true, the 9bp overlap is able

to constrain the number of choices for the next paired-end read on the genome to

≤ 4 in ˜92% of the cases.

6.4 Finding Anchors

We need to find overlap chains which link one contig to another. To do this, we

need paired-end reads which we can be unambiguously associated with only one
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n50 total length no. of contigs longest contig shortest contig

IDBA 76,486 4,489,247 155 254,174 222

After trim-
ming

76,286 4,454,629 133 253,974 266

Table 6.3: Assembly statistics before and after trimming the contigs. After trimming,
contigs shorter than the average insert size (250bp) were discarded.

contig. Thus, paired-end reads where both ends map uniquely to one contig are

identified as anchors. We look for anchors near the ends of every contig so that

we can find chains connecting the contigs.

Assemblers sometimes assemble contigs which encroach into the repeat region.

However, a paired-end read which maps to the encroaching region is not a reliable

anchor. The reason is as follows. If we manage to extend the other contigs flanking

the same repeat, the paired-end read we now think maps uniquely will actually

be mappable to multiple locations. To handle this, we trim 100bp from the ends

of every contig before looking for anchors.

For the N504 dataset, IDBA was chosen as the assembler. After trimming,

contigs shorter than the average insert size (250bp) were discarded. The statistics

before and after trimming are shown in Table 6.3.

The mapping of paired-end reads onto contigs was carried out using BLAT [9].

Concordant reads where both ends map uniquely to one contig were then selected

as anchors. Anchors could be found for 127 contigs.

6.5 Constructing contig adjacency graph

Two contigs are declared potentially adjacent if we can find a 9bp overlap chain

linking an anchor on the first contig to an anchor on the second contig. Thus

in Figure 6.7 (repeated from Proposed Approach section), paired-end read a is

an anchor on contig X, and paired-end read d is an anchor on contig Y. The

9bp overlap chain through reads b and c passes through the repeat region (red)
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Figure 6.7: Paired-end read a is an anchor on contig X. Paired-end read c is an anchor
on contig Y. A 9bp overlap chain leads from a to c through read b. Thus contigs X and
Y are declared potentially adjacent.

in between the contigs and links the two anchors. Thus X and Y are declared

potentially adjacent.

Any given contig might be potentially adjacent to many other contigs. The

collection of chains linking one contig to other contigs forms the contig adjacency

graph associated with that contig. We construct one contig adjacency graph per

contig.

For the N504 library, 1,292 potential adjacencies were found. These potential

adjacencies covered 123 contigs. Thus 123 contig adjacency graphs were gener-

ated. When compared against the reference genome, 91 direct adjacencies and 9

transitive adjacencies were found to be real. A transitive adjacency is when two

contigs are linked by the overlap chain, but there is another contig in between

them on the genome.

One contig out of the 133 contigs generated by IDBA could not be mapped to

the MG1655 reference genome [17]. We refer to this as the non-mapped contig.

Two adjacencies could not be validated against the reference genome as they linked

the non-mapped contig to mapped contigs.

6.6 Local Assembly

In the contig adjacency graph, the sequence between the two ends of a paired-

end read is unknown. Thus we carry out local assembly to fill the gap. The

strategy used for local assembly is adopted from PE-Assembler [2], and uses the

overlap-layout-consensus approach with paired-end information.
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As we traverse the contig adjacency graph, we carry out local assembly at each

gap. The algorithm used is described in Algorithm 3. Each step in the algorithm

helps reduce false positives. In the sections below, we describe the scenarios in

which each of these steps is helpful

Algorithm 3: Local assembly

input : contig adjacency graphs
output: assembled adjacencies
begin

Traverse each contig adjacency graph in topological sort order,
assembling each gap;
if a branch is encountered then

assemble all branches;
if only 1 branch is assembled then

Proceed with traversal and assembly;
else

// > 1 branch is assembled

if sequences are consistent then
if sequences are of same length then

Merge and proceed;
else

// consistent sequences but different lengths

Traverse both branches;

end

else
// inconsistent sequences

Stop traversal along this branch;

end

end

end

end

6.6.1 No Branches

In the ideal case, Tn5 will cut different occurrences of a repeat region at different

places. This would result in the situation illustrated in Figure 6.8. Here the repeat

region (red) occurs twice on the genome. The first occurrence is flanked by contig

X and contig Y. The second occurrence is flanked by contig U and contig V. Thus

the correct adjacencies are X to Y, and U to V. Tn5 cuts the first occurrence of

the repeat at cut site C. The second occurrence of the repeat is cut at sites G
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Figure 6.8: Ideal case. Different occurrences of a repeat are cut at different locations.
9bp overlap chains only link the correct contig pairs.

Figure 6.9: Contig adjacency graph associated with contig X when overlaps are is as in
Figure 6.8.

and H, both of which are different from C. Thus we are able to find 9bp overlap

chains linking only the correct contig pairs, and the contig adjacency graphs have

no branches.

The contig adjacency graphs associated with contigs X and U are as illustrated

in Figure 6.9 and Figure 6.10. The contig adjacency graphs have no branches, and

local assembly is likely to be able to assemble all gaps.

6.6.2 Only One Branch Can be Assembled

The overlapping sequence in Tn5’s cuts is 9bp long. However 9bp is not long

enough to be unique on the E.coli genome. Thus a scenario as described in Fig-

ure 6.11 can occur. Here the same 9bp sequence occurs at two locations on the

Figure 6.10: Contig adjacency graph associated with contig U when overlaps are is as
in Figure 6.8.
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genome and Tn5 cuts in both places (cut site C, yellow). Thus read b has degree

2, with edges (b, c) and (b, e). The region on either side of the 9bp is not repeated

(first occurrence has a green sequence on the left while second occurrence has a

pink sequence. Also, first occurrence has an orange sequence on the right while

second occurrence has a grey sequence). Read c overlaps with read d, which is an

anchor on contig Y. Also, read e overlaps with read f, which is an anchor on contig

Z. Thus we discover two potentially adjacent contig pairs — X to Y and X to Z.

Figure 6.11: Two occurrences of the same 9bp is cut in both places (cut site C, yellow).
However the region surrounding the repeated 9bp is different in the two cases. The first
occurrence has a green sequence on the left and an orange sequence on the right. The
second occurrence has a pink sequence on the left and a grey sequence on the right.
Since read c at the first cut site leads to contig Y and read e at the second cut site leads
to contig Z, we discover two potentially adjacent contig pairs X to Y and X to Z.

The contig adjacency graph associated with contig X resulting from this situa-

tion is shown in Figure 6.12. Here we see the branch at read b. One branch leads

to contig Y, while the other branch leads to contig X.

Since green, yellow, orange is the correct sequence, there will be other paired-

end reads which will help us assemble the gap in c (Figure 6.13). These reads

will not support the assembly of the gap in read e. Thus local assembly will

Figure 6.12: Contig adjacency graph associated with contig X when overlaps are is as
in Figure 6.11.
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Figure 6.13: Support exists for assembly only for the correct sequence. Here the brown
linked lines represent other paired-end reads.

fill the gaps only for the chain leading to the correct adjacency, X to Y. As we

can see, assembling the gaps in the overlaps chain not only helps us retrieve the

actual sequence occurring between the contigs, but also helps eliminate some false

positives.

6.6.3 Both Edges Are Assembled, Sequences Are Incon-

sistent

Sometimes a sequence longer than one end of a paired-end read but shorter than

the insert size is repeated on the genome. In the case of the N504 library, this would

mean a repeat of length >100bp and <250bp. This is illustrated in Figure 6.14.

The repeated sequence (yellow) has a cut site C in both occurrences. This leads

to a branch at read b, with edges (b, c) and (b, e). Read c overlaps with read

d, an anchor on contig Y. This leads to the adjacency X to Y. Read e overlaps

with read f, an anchor on contig Z. This leads to the adjacency X to Z. However

another molecule has cut sites outside the repeated sequence (H).

The contig adjacency graph associated with contig X is iilustrated in Fig-

ure 6.15.

This time the assembler might be able to assemble both branches (b, c) and

(b, e). That is, the edge (b, c) will be assembled to get the sequence green, yellow,

orange. The edge (b, e) will be assembled to get the sequence green, yellow, grey.

This is because the repeated region (yellow) is long enough that the paired-end
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Figure 6.14: The yellow sequence is longer than one end of a paired-end read but shorter
than the insert size, and is repeated on the genome. Both occurrences are cut at site C.
This leads to a branch at read b, with edges (b, c) and (b, e). The region on either side
of the yellow sequence is not repeated. Here the first occurrence has a green sequence
on the left while the second occurrence has a pink sequence. Also the first occurrence
has an orange sequence on the right while the second sequence has a grey sequence.

Figure 6.15: Contig adjacency graph associated with contig X when overlaps are as in
Figure 6.14.
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Figure 6.16: Other paired-end reads (brown) can support both branches (b, c) and (b,
e). Thus both branches can be assembled.

reads which have one end covering the gap to be assembled have the other end in

the repeated sequence (Figure 6.16).

In this case, we can only tell the correct adjacency using the path a->g->h->i,

which unambiguously links contig X to contig Y. The chains a->b->c->d and

a->b->e->f serve only to confuse the results. Now, we can see that although

both branches (b, c) and (b, e) are assembled, the sequences assembled in the two

branches are not the same. This is termed an inconsistent branch. Thus when

assembly results in an inconsistent branch, we stop traversal along that branch

and pursue other paths.

6.6.4 Both edges are assembled, sequence is consistent

In Figure 6.14, Figure 6.15 we see a branch at read a, with edges (a, b) and (a,

g). This is caused by Tn5 cutting at the same location on one end (cut-site B),

and different locations on the other end. Read b came from the other cut being

at site C. Read g came from the other cut being at site H. In this case, the same

reads support assembly of both branches, and both branches can be assembled

successfully. After assembly the sequences in both branches will have the same

prefix. This is termed a consistent branch. Since the lengths are different, both

branches are pursued. If the lengths are the same, the two branches are merged.

This can happen if the two reads are duplicates but the number of mismatches

are more than that allowed by the duplicate removal procedure.

Whenever we succeed in assembling a path from start anchor to end anchor,
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we store the assembled sequence. After all paths in a contig adjacency graph

have been traversed and assembled, there might be multiple sequences assembled

between a given pair of contigs. For each such sequence, a portion of the sequence

overlaps with the left contig, corresponding to the start anchor. Also, a portion of

the sequence overlaps with the right contig, corresponding to the end anchor. We

check whether the parts of the sequence overlapping with the contigs are similar

to the contigs. If so, the sequence is declared to be consistent with the contigs.

Thus, for a given pair of contigs, we first find the sequences consistent with the

contigs. We then group them into clusters such that the sequences in the same

cluster are similar to each other. We consider the biggest cluster to represent the

correct sequence between the two contigs, and output the consensus sequence.

For the N504 library, 123 contig adjacency graphs were traversed and local as-

sembly was carried out. Out of the 1,292 adjacencies represented in these graphs,

235 adjacencies could be assembled. The 235 assembled adjacencies involved 90

contigs. When compared against the reference genome, 69 of the assembled adja-

cencies were found to be real. 65 contigs were involved in the real adjacencies. Two

adjacencies could not be validated against the reference genome as they linked the

non-mapped contig to mapped contigs.

6.7 Filtering Using Split Reads

Several false positive adjacencies are retained even after local assembly is carried

out. To filter these, we first identify the positions where the contig ends and the

assembled sequence begins. At each of these positions, we look for split reads.

Split reads are of two types. Type1 split reads are paired-end reads with one end

mapping across the position of interest, and the other end mapping either to the

left or to the right. In Figure 6.17, read a is a Type1 split read with one end

on the junction between the contig and the assembled adj, and the other end on

the left. Similarly, read b is a Type1 split read with the other end on the right
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Figure 6.17: Split reads supporting one position. Here the adjacency X to Y has been
assembled with the red sequence in between. We look for split reads for the junctions
between the contig and the assembled sequence. Here reads a and b are Type1 split
reads. Read c is a Type2 split read.

of the position of interest. Type2 split reads are paired-end reads where one end

maps to the left of the position of interest, and the other end maps to the right.

In Figure 6.17, read c is a Type2 split read.

Split reads cannot exist if the assembled sequence is wrong. Also, if the contig

is really from the non-repeat part of the genome, there should be exactly one split

read of either type from every molecule that was sequenced. On the other hand

if the contig encroaches into the repeat region, the same read can be mapped to

multiple assembled adjacencies. Thus we set the number of molecules in the input

(50) as the threshold for the number of split reads expected. If an adjacency does

not have ≥ 50 split reads for both junctions, the adjacency is filtered out.

For the N504 library, 73 adjacencies were retained after filtering using split

reads. Of these, 32 could be validated with respect to the reference genome.

6.8 Merging Sub-sequences

After assembly, it is possible that some of the assembled adjacencies are sub-

sequences of others. This is illustrated in Figure 6.18. Here contig U lies between

contigs X and Y on the genome. We have been able to assemble all 3 adjacencies

— X to Y, X to U and X to Y.

After all sub-sequences starting from contig X have been detected and merged,

the shorter adjacencies are discarded from the list. In this case, adjacencies X to

U and U to Y are discarded.
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Figure 6.18: Merging sub-sequences. We discover that the sequence after assembly of
X to U is a sub-sequence of X to Y. We look for and discover an assembled sequence
from U to Y. If the sequence X to U and U to Y is similar to the sequence X to Y, we
merge the adjacencies.

Figure 6.19: A repeat region (red) occurs in two places on the genome. The first
occurrence is cut at sites {B, C, F, D, G}. The second occurrence is cut at sites {N, J,
C, O, K}. C is a common cut site.

For the N504 library, 6 adjacencies were discarded after merging subsequences.

6.9 Ranking

Even after local assembly, there can be cases where one contig is declared poten-

tially adjacent to more than 1 contig in the same direction. This can be explained

by Figure 6.19. Here a repeat region (red) occurs in two places on the reference

genome. The first occurrence is flanked by contig X and contig Y, and the other

occurrence is flanked by contig U and contig V. Both occurrences of the repeat

have a cut at site C (i.e the 9bp overlap resulting from the cut is C). Thus the

branch (b, c) leads to the correct adjacency X to Y, and the branch (b, j) leads

to the wrong adjacency X to V. As a result, contig X is declared adjacent to 2

contigs on its right. Similarly, the branch (i, j) leads to the correct adjacency U

to V, while the branch (i, c) leads to the wrong adjacency U to Y. Contig U is

declared adjacent to 2 contigs on its right.
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Figure 6.20: Contig adjacency graph associated with contig X when overlaps are as in
Figure 6.19.

Contig pair
(adjacency)

Start anchor End anchor Path Assembly
likely to
succeed?

Real ad-
jacency

X to Y a d a, b, c, d Y Y

X to Y a g a, e, f, g Y Y

X to V a k a, b, j, k Y N

Table 6.4: Paths traversed and assembled starting from contig X. Contig adjacency
graph is as in Figure 6.20. All paths are likely to be assembled correctly

The contig adjacency graph associated with contig X is shown in Figure 6.20.

As we can see, the common cut site C causes us to discover the wrong adjacency

X to V. Since the repeat is long and repeated identically, both branches (b, c) and

(b, j) can be assembled.

In Table 6.4, we see the paths traversed and assembled starting from contig X.

When we consider the reads used in the paths, we can count the number of

reads unique to each adjacency. This is demonstrated in Table 6.5. Here the

adjacency X to Y has 5 unique reads, approximately representative of the cut

sites unique to occurrence 1 of the repeat.

Thus the adjacency X to Y can be said to have more support than X to V,

and we can rank X to Y higher. This helps us identify the correct adjacency. The

corresponding details for contig U are shown below. Figure 6.21 shows the contig

adjacency graph associated with contig U.

Tables 6.6 and 6.7 show that the same criterion can be used to rank the
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Contig
pair (adja-
cency)

Reads used Unique reads No. of
unique
reads

Real ad-
jacency

X to Y a, b, c, d, e, f, g c, d, e, f, g 5 Y

X to V a, b, j, k j, k 2 N

Table 6.5: Reads used in the paths can be used to get the reads unique to each adjacency.
This gives us information about cut sites which are unique to each occurrence of the
repeat, allowing us to identify the correct adjacency.

Figure 6.21: Contig adjacency graph associated with contig U when overlaps are as in
Figure 6.19.

adjacency U to V higher than U to Y, allowing us to identify the correct adjacency.

Thus we can see that as long as there is at least 1 molecule in the sample where

the different occurrences of a repeat are cut at distinct cut sites, we are able to

rank the correct adjacency higher than the wrong one.

Another feature that is useful for ranking is the number of path clusters be-

tween a given pair of contigs. When we discover multiple paths between two

contigs, it is possible for the paths to share some common reads. In Fig 16, 17, we

can see paths a->b->c->d and a->e->f->g between contigs X and Y share one

common read, a. Thus there is 1 path cluster between contigs X and Y. In Fig 16,

18, we can see paths h->i->j->k and l->m->n->o between contigs U and V have

no reads in common. Thus the number of path clusters is 2. Since a 9bp overlap

suggests that the overlapping reads come from the same molecule, having multiple

path clusters indicates that we have been able to recover multiple molecules after

assembly. Thus we are more confident that an adjacency with a larger number of

64



Contig pair
(adjacency)

Start anchor End anchor Path Assembly
likely to
succeed?

Real ad-
jacency

U to V h k h, i, j, k Y Y

U to V l o l, m, n, o Y Y

U to V h d h, i, c, d Y N

Table 6.6: Paths traversed and assembled starting from contig U. Contig adjacency
graph is as in Figure 6.21. All paths are likely to be assembled correctly

Contig
pair (adja-
cency)

Reads used Unique reads No. of
unique
reads

Real ad-
jacency

U to V h, i, j, k, l, m, n, o j, k, l, m, n, o 5 Y

U to V h, i, c, d c, d 2 N

Table 6.7: Reads used in the paths can be used to get the reads unique to each adjacency.
This gives us information about cut sites which are unique to each occurrence of the
repeat, allowing us to identify the correct adjacency.
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assembled path clusters is correct.

Thus if a contig is declared adjacent to more than 1 contig in the same direc-

tion (degree >1), we use the number of unique reads to select the top 2 ranking

candidates. Among these two, we choose the candidate with more path clusters

as the real adjacency.

After ranking is carried out to ensure every contig has at most 1 contig on each

side, we have the final list of adjacencies that will be reported by the program.

Before printing the output, we carry out a global ranking among all the adjacencies

using the number of path clusters (more path clusters imply higher rank). This

is done to determine the confidence level in the reported adjacency. We also add

the input contigs which did not participate in any adjacency to the output list.

For the N504 library, 26 adjacencies were generated after ranking. Of these,

57% were validated by comparing to the reference genome. Another 7 adjacencies

were tested, out of which 4 were validated using biological validation. This lends

support to the in-silico discovery that the sequenced cells were only 96% similar

to the reference genome. Further biological validation needs to be carried out to

verify whether the rest of the predictions are real. The reported 26 adjacencies

improved the n50 of the assembly by 15.5%.

Among the 26 reported adjacencies, 7 were reported as being very high con-

fidence predictions. These predictions had an 85.7% accuracy when compared

to the reference genome. However these adjacencies alone were not sufficient to

impact the n50.
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Chapter 7

Future Work

As part of future efforts, it would be interesting to consider other features which

can help rank adjacencies after assembly. When a region is repeated n times on the

genome, there are 2n contigs flanking the n occurrences. It has been observed that

the adjacencies reported after assembly tend to be from within these 2n contigs.

Identifying the cluster of adjacencies that form this bipartite graph (Figure 7.1)

can provide useful information.

Another possibility is to cascade decisions taken at one step to other steps.

For example, in Figure 7.1, if we rank the adjacency X to Y high with very high

confidence, X to Q (and therefore Q to X) can be discarded. Thus the adjacency

associated with contig Q will be Q to P by default. This implies that P to Q is

Figure 7.1: A repeat region (red) occurs 3 times on the genome. The correct adjacencies
are X to Y, U to V and P to Q. If the occurrences are identical and/or some cut-sites
are shared, some false adjacencies may be reported. However building a graph of the
reported adjacencies can help get a picture of the various occurrences of the repeat and
the contigs flanking it.
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also chosen by default, allowing us to discard P to V. It is clear that a correct

starting choice can help with future choices enormously. However cascading an

incorrect choice can cause us to miss all the correct adjacencies.

In this work, the contigs generated by an existing assembler was accepted as

part of the input. Instead, one could map the reads to the closest known reference

genome, and use the mapping information to construct contigs. If we only allow

unique mapping, repeat regions and structural variations will have no coverage.

These gaps can then be linked using the algorithm developed here.

Another approach could be to develop a de novo assembler which exploits the

9bp overlap information at the contig-building step itself. Overlap chains with

no branches offer a promising starting template. Local assembly on such chains

would give us an initial set of contigs. Once an initial set of contigs has been

assembled, direct application of this algorithm can help link and extend to get the

final assembly.
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Appendix A

Sl.

No.

Common

gap start

Common

gap end

Gap

length

Repeat

no.

Repeat

length

Total no. of

occurrences

1 686847 687952 1105 1

1195 10

2 2063396 2064502 1106 1

3 2099003 2100075 1072 1

4 2286081 2287175 1094 1

5 3362230 3363321 1091 1

6 19778 20552 774 2

714 6
7 278300 279097 797 2

8 289622 290430 808 2

9 3580076 3580691 615 2

10 380241 381549 1335 3

127 5
11 1465357 1466542 1185 3
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12 2063413 2064482 1069 3

13 3182839 3184063 1224 3

14 314366 315515 1149 4

1255 5
15 390776 391922 1146 4

16 565767 566922 1155 4

17 223422 228430 5008 5 & 6

1732 & 2342 7

18 2723019 2727988 4969 5 & 6

19 3419969 3425484 5515 5 & 6

20 3937908 3943263 5355 5 & 6

21 4162695 4168253 5558 5 & 6

22 4205434 4208706 3272 5 & 6

23 728319 732041 3722 7 3588 2

24 1630023 1634007 3984 8 2440 2

25 1194942 1210147 15205 9 & 10 125 & 367 2

26 3466473 3467878 1405 11 1106 2

Table 1: Gaps common to all 4 assemblers (IDBA, SOAP de novo, SPA-des and PE-
Assembler). In most cases, the assemblers collapse all occurrences of the repeat into one
occurrence.
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Repeat

No.

Repeat BLAST result Remark

1 Escherichia coli str. K-12 substr

MG1655 beta-galactosidase (lacZ)

gene, complete cds; insertion se-

quence IS5 transposase (insH)

gene, complete cds; and lactose

permease (lacY) gene, partial se-

quence

2 occurrences are fully covered by

2 different assemblers. 3 occur-

rences are partially covered. This

is the transposon repeat whose

case study was performed

2 Escherichia coli insertion sequence

IS30B, complete sequence; inser-

tion sequence IS1B InsA (insA)

and InsB (insB) genes, complete

cds; and unknown genes

3 E. coli galE gene with inserted IS2

element

4 E.coli insertion sequence IS3
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5 & 6 Both repeats give the result ”E.

coli ribosomal operon rrnB encod-

ing the 16S ribosomal RNA. Also

transfer RNA specific for Glu, 23S

ribosomal RNA and two uniden-

tified open reading frames. This

sequence was obtained from the

transducing phage lambda-rif-d 18

(BAMHI fragment)”

The two repeat blocks are sepa-

rated by 380bp. The order of the

repeats is inverted in two of the

occurrences

7 Escherichia coli Rhs core pro-

tein and RhsC accessory element-

encoded genes, complete cds

8 Escherichia coli C321.deltaA,

complete sequence

9 & 10 The 367bp repeat gives the result

”E. coli K12 DNA fragment for

invertible-P region of the excisable

element e14”

The two repeat blocks are sepa-

rated by 751bp. The 125bp repeat

gives no special results

11 E.coli str operon with fusA and

tufA genes coding for elongation

factors G and Tu

Table 2: BLAST results for the repeat regions. The results show that several of the
repeats are caused by transposable elements. Repeat 8 shows that the sample cells have
sequences from other strains such as C321.deltaA
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